1000 resultados para Optical-fields
Resumo:
We have numerically solved the Heisenberg-Langevin equations describing the propagation of quantized fields through an optically thick sample of atoms. Two orthogonal polarization components are considered for the field, and the complete Zeeman sublevel structure of the atomic transition is taken into account. Quantum fluctuations of atomic operators are included through appropriate Langevin forces. We have considered an incident field in a linearly polarized coherent state (driving field) and vacuum in the perpendicular polarization and calculated the noise spectra of the amplitude and phase quadratures of the output field for two orthogonal polarizations. We analyze different configurations depending on the total angular momentum of the ground and excited atomic states. We examine the generation of squeezing for the driving-field polarization component and vacuum squeezing of the orthogonal polarization. Entanglement of orthogonally polarized modes is predicted. Noise spectral features specific to (Zeeman) multilevel configurations are identified.
Resumo:
We discuss the connection between quantum interference effects in optical beams and radiation fields emitted from atomic systems. We illustrate this connection by a study of the first- and second-order correlation functions of optical fields and atomic dipole moments. We explore the role of correlations between the emitting systems and present examples of practical methods to implement two systems with non-orthogonal dipole moments. We also derive general conditions for quantum interference in a two-atom system and for a control of spontaneous emission. The relation between population trapping and dark states is also discussed. Moreover, we present quantum dressed-atom models of cancellation of spontaneous emission, amplification on dark transitions, fluorescence quenching and coherent population trapping.
Resumo:
The control of optical fields on the nanometre scale is becoming an increasingly important tool in many fields, ranging from channelling light delivery in photovoltaics and light emitting diodes to increasing the sensitivity of chemical sensors to single molecule levels. The ability to design and manipulate light fields with specific frequency and space characteristics is explored in this project. We present an alternative realisation of Extraordinary Optical Transmission (EOT) that requires only a single aperture and a coupled waveguide. We show how this waveguide-resonant EOT improves the transmissivity of single apertures. An important technique in imaging is Near-Field Scanning Optical Microscopy (NSOM); we show how waveguide-resonant EOT and the novel probe design assist in improving the efficiency of NSOM probes by two orders of magnitude, and allow the imaging of single molecules with an optical resolution of as good as 50 nm. We show how optical antennas are fabricated into the apex of sharp tips and can be used in a near-field configuration.
Resumo:
We develop an all-optical scheme to generate superpositions of macroscopically distinguishable coherent states in traveling optical fields. It nondeterministically distills coherent-state superpositions (CSS's) with large amplitudes out of CSS's with small amplitudes using inefficient photon detection. The small CSS's required to produce CSS's with larger amplitudes are extremely well approximated by squeezed single photons. We discuss some remarkable features of this scheme: it effectively purifies mixed initial states emitted from inefficient single-photon sources and boosts negativity of Wigner functions of quantum states.
Resumo:
Optical control of interactions in ultracold gases opens new fields of research by creating ``designer" interactions with high spatial and temporal resolution. However, previous optical methods using single optical fields generally suffer from atom loss due to spontaneous scattering. This thesis reports new optical methods, employing two optical fields to control interactions in ultracold gases, while suppressing spontaneous scattering by quantum interference. In this dissertation, I will discuss the experimental demonstration of two optical field methods to control narrow and broad magnetic Feshbach resonances in an ultracold gas of $^6$Li atoms. The narrow Feshbach resonance is shifted by $30$ times its width and atom loss suppressed by destructive quantum interference. Near the broad Feshbach resonance, the spontaneous lifetime of the atoms is increased from $0.5$ ms for single field methods to $400$ ms using our two optical field method. Furthermore, I report on a new theoretical model, the continuum-dressed state model, that calculates the optically induced scattering phase shift for both the broad and narrow Feshbach resonances by treating them in a unified manner. The continuum-dressed state model fits the experimental data both in shape and magnitude using only one free parameter. Using the continuum-dressed state model, I illustrate the advantages of our two optical field method over single-field optical methods.
Resumo:
Sub-wavelength diameter holes in thin metal layers can exhibit remarkable optical features that make them highly suitable for (bio)sensing applications. Either as efficient light scattering centers for surface plasmon excitation or metal-clad optical waveguides, they are able to form strongly localized optical fields that can effectively interact with biomolecules and/or nanoparticles on the nanoscale. As the metal of choice, aluminum exhibits good optical and electrical properties, is easy to manufacture and process and, unlike gold and silver, its low cost makes it very promising for commercial applications. However, aluminum has been scarcely used for biosensing purposes due to corrosion and pitting issues. In this short review, we show our recent achievements on aluminum nanohole platforms for (bio)sensing. These include a method to circumvent aluminum degradation—which has been successfully applied to the demonstration of aluminum nanohole array (NHA) immunosensors based on both, glass and polycarbonate compact discs supports—the use of aluminum nanoholes operating as optical waveguides for synthesizing submicron-sized molecularly imprinted polymers by local photopolymerization, and a technique for fabricating transferable aluminum NHAs onto flexible pressure-sensitive adhesive tapes, which could facilitate the development of a wearable technology based on aluminum NHAs.
Resumo:
We analyse and compare various aspects of the performance of atomic beam splitters fur two- and three-level atoms, both of which use bichromatic optical fields. We calculate the extent to which spontaneous emission degrades the sharpness of the splitting, and how it might degrade the visibility of an idealised atom interferometer which includes either beam splitting mechanism. (C) 1998 Elsevier Science B.V.
Resumo:
We describe the classical and quantum two-dimensional nonlinear dynamics of large blue-detuned evanescent-wave guiding cold atoms in hollow fiber. We show that chaotic dynamics exists for classic dynamics, when the intensity of the beam is periodically modulated. The two-dimensional distributions of atoms in (x,y) plane are simulated. We show that the atoms will accumulate on several annular regions when the system enters a regime of global chaos. Our simulation shows that, when the atomic flux is very small, a similar distribution will be obtained if we detect the atomic distribution once each the modulation period and integrate the signals. For quantum dynamics, quantum collapses, and revivals appear. For periodically modulated optical potential, the variance of atomic position will be suppressed compared to the no modulation case. The atomic angular momentum will influence the evolution of wave function in two-dimensional quantum system of hollow fiber.
Resumo:
We propose a simple yet efficient method for generating in-plane hollow beams with a nearly full circular light shell without the contribution of backward propagating waves. The method relies on modulating the phase in the near field of a centrosymmetric optical wave front, such as that from a high-numerical-aperture focused wave field. We illustrate how beam acceleration may be carried out by using an ultranarrow non-flat meta-surface formed by engineered plasmonic nanoslits. A mirror-symmetric, with respect to the optical axis, circular caustic surface is numerically demonstrated that can be used as an optical bottle.
Resumo:
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.
Resumo:
An Erbium-doped fibre ring laser hybrid mode-locked with single-wall carbon nanotubes (SWNT) and nonlinear polarisation evolution (NPE) without an optical isolator has been investigated for various cavity conditions. Precise control of the state of polarisation (SOP) in the cavity ensures different losses for counter-propagating optical fields. As the result, the laser operates in quasi-unidirectional regime in both clockwise (CW) and counter-clockwise (CCW) directions with the emission strengths difference of the directions of 22 dB. Furthermore, by adjusting the net birefringence in the cavity, the laser can operate in a bidirectional generation. In this case, a laser pumped with 75 mW power at 980 nm generates almost identical 790 and 570 fs soliton pulses with an average power of 1.17 and 1.11 mW. The operation stability and pulse quality of the soliton pulses in both unidirectional regimes are highly competitive with those generated in conventional ring fibre lasers with isolator in the cavity. Demonstrated bidirectional laser operation can find vital applications in gyroscopes or precision rotation sensing technologies.
Resumo:
We show that a wide-angle converging wave may be transformed into a shape-preserving accelerating beam having a beam-width near the diffraction limit. For that purpose, we followed a strategy that is particularly conceived for the acceleration of nonparaxial laser beams, in contrast to the well-known method by Siviloglou et al (2007 Phys. Rev. Lett. 99 213901). The concept of optical near-field shaping is applied to the design of non-flat ultra-narrow diffractive optical elements. The engineered curvilinear caustic can be set up by the beam emerging from a dynamic assembly of elementary gratings, the latter enabling to modify the effective refractive index of the metamaterial as it is arranged in controlled orientations. This light shaping process, besides being of theoretical interest, is expected to open up a wide range of broadband application possibilities.
Resumo:
Spatially accelerating beams are non-diffracting beams whose intensity is localized along curvilinear trajectories, also incomplete circular trajectories, before diffraction broadening governs their propagation. In this paper we report on numerical simulations showing the conversion of a high-numerical-aperture focused beam into a nonparaxial shape-preserving accelerating beam having a beam-width near the diffraction limit. Beam shaping is induced near the focal region by a diffractive optical element that consists of a non-planar subwavelength grating enabling a Bessel signature.
Resumo:
We present a controlled stress microviscometer with applications to complex fluids. It generates and measures microscopic fluid velocity fields, based on dual beam optical tweezers. This allows an investigation of bulk viscous properties and local inhomogeneities at the probe particle surface. The accuracy of the method is demonstrated in water. In a complex fluid model (hyaluronic acid), we observe a strong deviation of the flow field from classical behavior. Knowledge of the deviation together with an optical torque measurement is used to determine the bulk viscosity. Furthermore, we model the observed deviation and derive microscopic parameters.
Resumo:
[EN] In this paper we show that a classic optical flow technique by Nagel and Enkelmann can be regarded as an early anisotropic diffusion method with a diffusion tensor. We introduce three improvements into the model formulation that avoid inconsistencies caused by centering the brightness term and the smoothness term in different images use a linear scale-space focusing strategy from coarse to fine scales for avoiding convergence to physically irrelevant local minima, and create an energy functional that is invariant under linear brightness changes. Applying a gradient descent method to the resulting energy functional leads to a system of diffusion-reaction equations. We prove that this system has a unique solution under realistic assumptions on the initial data, and we present an efficient linear implicit numerical scheme in detail. Our method creates flow fields with 100% density over the entire image domain, it is robust under a large range of parameter variations, and it can recover displacement fields that are far beyond the typical one-pixel limits which are characteristic for many differential methods for determining optical flow. We show that it performs better than the classic optical flow methods with 100% density that are evaluated by Barron et al. (1994). Our software is available from the Internet.