994 resultados para Optical tracking
Resumo:
We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2×2×3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies.
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting applications can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on desktop computer when home-based rehabilitation is preferred.
Resumo:
We present a novel way of interacting with an immersive virtual environment which involves inexpensive motion-capture using the Wii Remote®. A software framework is also presented to visualize and share this information across two remote CAVETM-like environments. The resulting application can be used to assist rehabilitation by sending motion information across remote sites. The application’s software and hardware components are scalable enough to be used on a desktop computer when home-based rehabilitation is preferred.
Resumo:
In the last years the number of industrial applications for Augmented Reality (AR) and Virtual Reality (VR) environments has significantly increased. Optical tracking systems are an important component of AR/VR environments. In this work, a low cost optical tracking system with adequate attributes for professional use is proposed. The system works in infrared spectral region to reduce optical noise. A highspeed camera, equipped with daylight blocking filter and infrared flash strobes, transfers uncompressed grayscale images to a regular PC, where image pre-processing software and the PTrack tracking algorithm recognize a set of retro-reflective markers and extract its 3D position and orientation. Included in this work is a comprehensive research on image pre-processing and tracking algorithms. A testbed was built to perform accuracy and precision tests. Results show that the system reaches accuracy and precision levels slightly worse than but still comparable to professional systems. Due to its modularity, the system can be expanded by using several one-camera tracking modules linked by a sensor fusion algorithm, in order to obtain a larger working range. A setup with two modules was built and tested, resulting in performance similar to the stand-alone configuration.
Resumo:
Three-dimensional rotational X-ray imaging with the SIREMOBIL Iso-C3D (Siemens AG, Medical Solutions, Erlangen, Germany) has become a well-established intra-operative imaging modality. In combination with a tracking system, the Iso-C3D provides inherently registered image volumes ready for direct navigation. This is achieved by means of a pre-calibration procedure. The aim of this study was to investigate the influence of the tracking system used on the overall navigation accuracy of direct Iso-C3D navigation. Three models of tracking system were used in the study: Two Optotrak 3020s, a Polaris P4 and a Polaris Spectra system, with both Polaris systems being in the passive operation mode. The evaluation was carried out at two different sites using two Iso-C3D devices. To measure the navigation accuracy, a number of phantom experiments were conducted using an acrylic phantom equipped with titanium spheres. After scanning, a special pointer was used to pinpoint these markers. The difference between the digitized and navigated positions served as the accuracy measure. Up to 20 phantom scans were performed for each tracking system. The average accuracy measured was 0.86 mm and 0.96 mm for the two Optotrak 3020 systems, 1.15 mm for the Polaris P4, and 1.04 mm for the Polaris Spectra system. For the Polaris systems a higher maximal error was found, but all three systems yielded similar minimal errors. On average, all tracking systems used in this study could deliver similar navigation accuracy. The passive Polaris system showed ? as expected ? higher maximal errors; however, depending on the application constraints, this might be negligible.
Resumo:
An Internet survey demonstrated the existence of problems related to intraoperative tracking camera set-up and alignment. It is hypothesized that these problems are a result of the limited field of view of today's optoelectronic camera systems, which is usually insufficiently large to keep the entire site of surgical action in view during an intervention. A method is proposed to augment a camera's field of view by actively controlling camera orientation, enabling it to track instruments as they are used intraoperatively. In an experimental study, an increase of almost 300% was found in the effective volume in which instruments could be tracked.
Resumo:
An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The link between natural ion-line enhancements in radar spectra and auroral activity has been the subject of recent studies but conclusions have been limited by the spatial and temporal resolution previously available. The next challenge is to use shorter sub-second integration times in combination with interferometric programmes to resolve spatial structure within the main radar beam, and so relate enhanced filaments to individual auroral rays. This paper presents initial studies of a technique, using optical and spectral satellite signatures, to calibrate the received phase of a signal with the position of the scattering source along the interferometric baseline of the EISCAT Svalbard Radar. It is shown that a consistent relationship can be found only if the satellite passage through the phase fringes is adjusted from the passage predicted by optical tracking. This required adjustment is interpreted as being due to the vector between the theoretical focusing points of the two antennae, i.e. the true radar baseline, differing from the baseline obtained by survey between the antenna foot points. A method to obtain a measurement of the true interferometric baseline using multiple satellite passes is outlined.
Resumo:
This thesis presents an investigation on endoscopic optical coherence tomography (OCT). As a noninvasive imaging modality, OCT emerges as an increasingly important diagnostic tool for many clinical applications. Despite of many of its merits, such as high resolution and depth resolvability, a major limitation is the relatively shallow penetration depth in tissue (about 2∼3 mm). This is mainly due to tissue scattering and absorption. To overcome this limitation, people have been developing many different endoscopic OCT systems. By utilizing a minimally invasive endoscope, the OCT probing beam can be brought to the close vicinity of the tissue of interest and bypass the scattering of intervening tissues so that it can collect the reflected light signal from desired depth and provide a clear image representing the physiological structure of the region, which can not be disclosed by traditional OCT. In this thesis, three endoscope designs have been studied. While they rely on vastly different principles, they all converge to solve this long-standing problem.
A hand-held endoscope with manual scanning is first explored. When a user is holding a hand- held endoscope to examine samples, the movement of the device provides a natural scanning. We proposed and implemented an optical tracking system to estimate and record the trajectory of the device. By registering the OCT axial scan with the spatial information obtained from the tracking system, one can use this system to simply ‘paint’ a desired volume and get any arbitrary scanning pattern by manually waving the endoscope over the region of interest. The accuracy of the tracking system was measured to be about 10 microns, which is comparable to the lateral resolution of most OCT system. Targeted phantom sample and biological samples were manually scanned and the reconstructed images verified the method.
Next, we investigated a mechanical way to steer the beam in an OCT endoscope, which is termed as Paired-angle-rotation scanning (PARS). This concept was proposed by my colleague and we further developed this technology by enhancing the longevity of the device, reducing the diameter of the probe, and shrinking down the form factor of the hand-piece. Several families of probes have been designed and fabricated with various optical performances. They have been applied to different applications, including the collector channel examination for glaucoma stent implantation, and vitreous remnant detection during live animal vitrectomy.
Lastly a novel non-moving scanning method has been devised. This approach is based on the EO effect of a KTN crystal. With Ohmic contact of the electrodes, the KTN crystal can exhibit a special mode of EO effect, termed as space-charge-controlled electro-optic effect, where the carrier electron will be injected into the material via the Ohmic contact. By applying a high voltage across the material, a linear phase profile can be built under this mode, which in turn deflects the light beam passing through. We constructed a relay telescope to adapt the KTN deflector into a bench top OCT scanning system. One of major technical challenges for this system is the strong chromatic dispersion of KTN crystal within the wavelength band of OCT system. We investigated its impact on the acquired OCT images and proposed a new approach to estimate and compensate the actual dispersion. Comparing with traditional methods, the new method is more computational efficient and accurate. Some biological samples were scanned by this KTN based system. The acquired images justified the feasibility of the usage of this system into a endoscopy setting. My research above all aims to provide solutions to implement an OCT endoscope. As technology evolves from manual, to mechanical, and to electrical approaches, different solutions are presented. Since all have their own advantages and disadvantages, one has to determine the actual requirements and select the best fit for a specific application.
Resumo:
Background: Precise needle puncture of renal calyces is a challenging and essential step for successful percutaneous nephrolithotomy. This work tests and evaluates, through a clinical trial, a real-time navigation system to plan and guide percutaneous kidney puncture. Methods: A novel system, entitled i3DPuncture, was developed to aid surgeons in establishing the desired puncture site and the best virtual puncture trajectory, by gathering and processing data from a tracked needle with optical passive markers. In order to navigate and superimpose the needle to a preoperative volume, the patient, 3D image data and tracker system were previously registered intraoperatively using seven points that were strategically chosen based on rigid bone structures and nearby kidney area. In addition, relevant anatomical structures for surgical navigation were automatically segmented using a multi-organ segmentation algorithm that clusters volumes based on statistical properties and minimum description length criterion. For each cluster, a rendering transfer function enhanced the visualization of different organs and surrounding tissues. Results: One puncture attempt was sufficient to achieve a successful kidney puncture. The puncture took 265 seconds, and 32 seconds were necessary to plan the puncture trajectory. The virtual puncture path was followed correctively until the needle tip reached the desired kidney calyceal. Conclusions: This new solution provided spatial information regarding the needle inside the body and the possibility to visualize surrounding organs. It may offer a promising and innovative solution for percutaneous punctures.
Resumo:
A esquizofrenia é uma perturbação mental grave caracterizada pela coexistência de sintomas positivos, negativos e de desorganização do pensamento e do comportamento. As alterações motoras são consistentemente observadas mas, ainda pouco estudadas na esquizofrenia, sendo relevantes para o seu diagnóstico. Neste quadro, o presente estudo tem como objetivo verificar se os indivíduos com esquizofrenia apresentam alterações na coordenação motora, comparativamente com o grupo sem esquizofrenia, bem como analisar se as disfunções dos sinais neurológicos subtis (SNS) motores se encontram correlacionadas com o funcionamento executivo e com os domínios psicopatológicos da perturbação. No total participaram 29 indivíduos (13 com diagnóstico de esquizofrenia e 16 sem diagnóstico) equivalentes em termos de idade, género, escolaridade e índice de massa corporal. Para avaliar o desempenho motor recorreu-se ao sistema Biostage de parametrização do movimento em tempo real, com a tarefa de lançameto ao alvo; a presença de SNS foi examinada através da Brief Motor Scale; o funcionamento executivo pela aplicação do subteste do Vocabulário e da fluência verbal e a sintomatologia clínica através da Positive and Negative Sindrome Scale. Pela análise cinemática do movimento constatou-se que os indivíduos com esquizofrenia recrutam um padrão motor menos desenvolvido e imaturo de movimento, com menor individualização das componentes (principalmente do tronco e pélvis), necessitando de mais tempo para executar a tarefa, comparativamente com os sujeitos sem a perturbação que evidenciaram um movimento mais avançado de movimento. Os indivíduos com esquizofrenia mostraram índices elevados de disfunção dos SNS (média =6,01) estabelecendo este domínio uma relação boa e negativa com o desempenho verbal (rho Spearman=-0,62) e uma relação forte e positiva com todos os domínios psicopatológicos (rho Spearman=0,74). O estudo da existência de alterações motoras como parte intrínseca da esquizofrenia revela-se pertinente uma vez que possibilita uma compreensão mais aprofundada da sua fisiopatologia e permite que se desenvolvam práticas mais efetivas na área da saúde e reabilitação.
Resumo:
Free induction decay (FID) navigators were found to qualitatively detect rigid-body head movements, yet it is unknown to what extent they can provide quantitative motion estimates. Here, we acquired FID navigators at different sampling rates and simultaneously measured head movements using a highly accurate optical motion tracking system. This strategy allowed us to estimate the accuracy and precision of FID navigators for quantification of rigid-body head movements. Five subjects were scanned with a 32-channel head coil array on a clinical 3T MR scanner during several resting and guided head movement periods. For each subject we trained a linear regression model based on FID navigator and optical motion tracking signals. FID-based motion model accuracy and precision was evaluated using cross-validation. FID-based prediction of rigid-body head motion was found to be with a mean translational and rotational error of 0.14±0.21 mm and 0.08±0.13(°) , respectively. Robust model training with sub-millimeter and sub-degree accuracy could be achieved using 100 data points with motion magnitudes of ±2 mm and ±1(°) for translation and rotation. The obtained linear models appeared to be subject-specific as inter-subject application of a "universal" FID-based motion model resulted in poor prediction accuracy. The results show that substantial rigid-body motion information is encoded in FID navigator signal time courses. Although, the applied method currently requires the simultaneous acquisition of FID signals and optical tracking data, the findings suggest that multi-channel FID navigators have a potential to complement existing tracking technologies for accurate rigid-body motion detection and correction in MRI.
Resumo:
Augmented Reality (AR) systems which use optical tracking with fiducial marker for registration have had an important role in popularizing this technology, since only a personal computer with a conventional webcam is required. However, in most these applications, the virtual elements are shown only in the foreground a real element does not occlude a virtual one. The method presented enables AR environments based on fiducial markers to support mutual occlusion between a real element and many virtual ones, according to the elements position (depth) in the environment. © 2012 IEEE.
Resumo:
Image-guided, computer-assisted neurosurgery has emerged to improve localization and targeting, to provide a better anatomic definition of the surgical field, and to decrease invasiveness. Usually, in image-guided surgery, a computer displays the surgical field in a CT/MR environment, using axial, coronal or sagittal views, or even a 3D representation of the patient. Such a system forces the surgeon to look away from the surgical scene to the computer screen. Moreover, this kind of information, being pre-operative imaging, can not be modified during the operation, so it remains valid for guidance in the first stage of the surgical procedure, and mainly for rigid structures like bones. In order to solve the two constraints mentioned before, we are developing an ultrasoundguided surgical microscope. Such a system takes the advantage that surgical microscopy and ultrasound systems are already used in neurosurgery, so it does not add more complexity to the surgical procedure. We have integrated an optical tracking device in the microscope and an augmented reality overlay system with which we avoid the need to look away from the scene, providing correctly aligned surgical images with sub-millimeter accuracy. In addition to the standard CT and 3D views, we are able to track an ultrasound probe, and using a previous calibration and registration of the imaging, the image obtained is correctly projected to the overlay system, so the surgeon can always localize the target and verify the effects of the intervention. Several tests of the system have been already performed to evaluate the accuracy, and clinical experiments are currently in progress in order to validate the clinical usefulness of the system.
Resumo:
CONCLUSION: Our self-developed planning and navigation system has proven its capacity for accurate surgery on the anterior and lateral skull base. With the incorporation of augmented reality, image-guided surgery will evolve into 'information-guided surgery'. OBJECTIVE: Microscopic or endoscopic skull base surgery is technically demanding and its outcome has a great impact on a patient's quality of life. The goal of the project was aimed at developing and evaluating enabling navigation surgery tools for simulation, planning, training, education, and performance. This clinically applied technological research was complemented by a series of patients (n=406) who were treated by anterior and lateral skull base procedures between 1997 and 2006. MATERIALS AND METHODS: Optical tracking technology was used for positional sensing of instruments. A newly designed dynamic reference base with specific registration techniques using fine needle pointer or ultrasound enables the surgeon to work with a target error of < 1 mm. An automatic registration assessment method, which provides the user with a color-coded fused representation of CT and MR images, indicates to the surgeon the location and extent of registration (in)accuracy. Integration of a small tracker camera mounted directly on the microscope permits an advantageous ergonomic way of working in the operating room. Additionally, guidance information (augmented reality) from multimodal datasets (CT, MRI, angiography) can be overlaid directly onto the surgical microscope view. The virtual simulator as a training tool in endonasal and otological skull base surgery provides an understanding of the anatomy as well as preoperative practice using real patient data. RESULTS: Using our navigation system, no major complications occurred in spite of the fact that the series included difficult skull base procedures. An improved quality in the surgical outcome was identified compared with our control group without navigation and compared with the literature. The surgical time consumption was reduced and more minimally invasive approaches were possible. According to the participants' questionnaires, the educational effect of the virtual simulator in our residency program received a high ranking.