954 resultados para Optical modes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study novel side-emitting modes in VCSEL microcavities. These modes correspond to π-shaped propagation along the mesa diameter, reflection from angled mesa walls and bottom Bragg reflector. We believe this study of π-modes is important for optimization of VCSEL design for improvement of efficiency.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, we propose a lattice dynamic treatment for the total potential energy of single-walled carbon nanotubes (SWCNTs) which is, apart from a parameter for the nonlinear effects, extracted from the vibrational energy of the planar graphene sheet. The energetics, elasticity and lattice dynamics are treated in terms of the same set of force constants, independently of the tube structures. Based upon this proposal, we have investigated systematically the relaxed lattice configuration for narrow SWCNTs, the strain energy, the Young's modulus and Poisson ratio, and the lattice vibrational properties with respect to the relaxed equilibrium tubule structure. Our calculated results for various physical quantities are nicely in consistency with existing experimental measurements. In particular, we verified that the relaxation effect makes the bond length longer and the frequencies of various optical vibrational modes softer. Our calculation provides evidence that the Young's modulus of an armchair tube exceeds that of the planar graphene sheet, and that the large diameter limits of the Young's modulus and Poisson ratio are in agreement with the experimental values of graphite; the calculated radial breathing modes for ultra-narrow tubes with diameters ranging between 2 and 5 angstrom coincide with the experimental results and the existing ab initio calculations with satisfaction. For narrow tubes with a diameter of 20 angstrom, the calculated frequencies of optical modes in the tubule's tangential plane, as well as those of radial breathing modes, are also in good agreement with the experimental measurements. In addition, our calculation shows that various physical quantities of relaxed SWCNTs can actually be expanded in terms of the chiral angle defined for the corresponding ideal SWCNTs.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Optical modes of AlGaInP laser diodes with real refractive index guided self-aligned (RISA) structure were analyzed theoretically on the basis of two-dimension semivectorial finite-difference methods (SV-FDMs) and the computed simulation results were presented. The eigenvalue and eigenfunction of this two-dimension waveguide were obtained and the dependence of the confinement factor and beam divergence angles in the direction of parallel and perpendicular to the pn junction on the structure parameters such as the number of quantum wells, the Al composition of the cladding layers, the ridge width, the waveguide thickness and the residual thickness of the upper P-cladding layer were investigated. The results can provide optimized structure parameters and help us design and fabricate high performance AlGaInP laser diodes with a low beam aspect ratio required for optical storage applications.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The field of optical label free biosensors has become a topic of interest during past years, with devices based on the detection of angular or wavelength shift of optical modes [1]. Common parameters to characterize their performance are the Limit of Detection (LOD, defined as the minimum change of refractive index upon the sensing surface that the device is able to detect, and also BioLOD, which represents the minimum amount of target analyte accurately resolved by the system; with units of concentration (common un its are p pm, ng/ml, or nM). LOD gives a first value to compare different biosensors, and is obtained both theoretically (using photonic calculation tools), and experimentally,covering the sensing area with fluids of different refractive indexes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The Raman spectrum of strontium titanate has been recorded using λ 4358 of mercury as exciter. The observed spectrum consists of 7 Raman lines, one of which is of low frequency, as expected from the recent theory of Cochran. 6 of these Raman lines have been interpreted as the first order spectrum arising from a small deviation of the cubic strontium titanate from its idealized symmetry. It has been shown that one normal mode of SrTiO3 neglected by J.T. Last, will be really active in infrared absorption in the region of 440 cm-1 and that it has to be taken into account in the interpretation of the infrared spectra of titanates. The four vibrational modes of the unit cell of SrTiO3 correspond to frequencies of 90, 335, 441 and 620 cm-1 observed in Raman effect. The large width of the Raman lines and the additional lines at 256 cm-1 and 726 cm-1 have been attributed to a splitting of the longitudinal and transverse optical modes. With the observed frequencies it has been found possible to account for in a satisfactory manner the specific heat of SrTiO3 in the range 54·84° K to 1800° K.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Advances in optical techniques have enabled many breakthroughs in biology and medicine. However, light scattering by biological tissues remains a great obstacle, restricting the use of optical methods to thin ex vivo sections or superficial layers in vivo. In this thesis, we present two related methods that overcome the optical depth limit—digital time reversal of ultrasound encoded light (digital TRUE) and time reversal of variance-encoded light (TROVE). These two techniques share the same principle of using acousto-optic beacons for time reversal optical focusing within highly scattering media, like biological tissues. Ultrasound, unlike light, is not significantly scattered in soft biological tissues, allowing for ultrasound focusing. In addition, a fraction of the scattered optical wavefront that passes through the ultrasound focus gets frequency-shifted via the acousto-optic effect, essentially creating a virtual source of frequency-shifted light within the tissue. The scattered ultrasound-tagged wavefront can be selectively measured outside the tissue and time-reversed to converge at the location of the ultrasound focus, enabling optical focusing within deep tissues. In digital TRUE, we time reverse ultrasound-tagged light with an optoelectronic time reversal device (the digital optical phase conjugate mirror, DOPC). The use of the DOPC enables high optical gain, allowing for high intensity optical focusing and focal fluorescence imaging in thick tissues at a lateral resolution of 36 µm by 52 µm. The resolution of the TRUE approach is fundamentally limited to that of the wavelength of ultrasound. The ultrasound focus (~ tens of microns wide) usually contains hundreds to thousands of optical modes, such that the scattered wavefront measured is a linear combination of the contributions of all these optical modes. In TROVE, we make use of our ability to digitally record, analyze and manipulate the scattered wavefront to demix the contributions of these spatial modes using variance encoding. In essence, we encode each spatial mode inside the scattering sample with a unique variance, allowing us to computationally derive the time reversal wavefront that corresponds to a single optical mode. In doing so, we uncouple the system resolution from the size of the ultrasound focus, demonstrating optical focusing and imaging between highly diffusing samples at an unprecedented, speckle-scale lateral resolution of ~ 5 µm. Our methods open up the possibility of fully exploiting the prowess and versatility of biomedical optics in deep tissues.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Zintl phases, a subset of intermetallic compounds characterized by covalently-bonded "sub-structures," surrounded by highly electropositive cations, exhibit precisely the characteristics desired for thermoelectric applications. The requirement that Zintl compounds satisfy the valence of anions through the formation of covalent substructures leads to many unique, complex crystal structures. Such complexity often leads to exceptionally low lattice thermal conductivity due to the containment of heat in low velocity optical modes in the phonon dispersion. To date, excellent thermoelectric properties have been demonstrated in several Zintl compounds. However, compared with the large number of known Zintl phases, very few have been investigated as thermoelectric materials.

From this pool of uninvestigated compounds, we selected a class of Zintl antimonides that share a common structural motif: anionic moieties resembling infinite chains of linked MSb4 tetrahedra, where $M$ is a triel element. The compounds discussed in this thesis (A5M2Sb6 and A3MSb3, where A = Ca or Sr and M = Al, Ga and In) crystallize as four distinct, but closely related "chain-forming" structure types. This thesis describes the thermoelectric characterization and optimization of these phases, and explores the influence of their chemistry and structure on the thermal and electronic transport properties. Due to their large unit cells, each compound exhibits exceptionally low lattice thermal conductivity (0.4 - 0.6 W/mK at 1000 K), approaching the predicted glassy minimum at high temperatures. A combination of Density Functional calculations and classical transport models were used to explain the experimentally observed electronic transport properties of each compound. Consistent with the Zintl electron counting formalism, A5M2Sb6 and A3MSb3 phases were found to have filled valence bands and exhibit intrinsic electronic properties. Doping with divalent transition metals (Zn2+ and Mn2+) on the M3+ site, or Na1+ on the A3+ site allowed for rational control of the carrier concentration and a transition towards degenerate semiconducting behavior. In optimally-doped samples, promising peak zT values between 0.4 and 0.9 were obtained, highlighting the value of continued investigations of complex Zintl phases.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last several decades there have been significant advances in the study and understanding of light behavior in nanoscale geometries. Entire fields such as those based on photonic crystals, plasmonics and metamaterials have been developed, accelerating the growth of knowledge related to nanoscale light manipulation. Coupled with recent interest in cheap, reliable renewable energy, a new field has blossomed, that of nanophotonic solar cells.

In this thesis, we examine important properties of thin-film solar cells from a nanophotonics perspective. We identify key differences between nanophotonic devices and traditional, thick solar cells. We propose a new way of understanding and describing limits to light trapping and show that certain nanophotonic solar cell designs can have light trapping limits above the so called ray-optic or ergodic limit. We propose that a necessary requisite to exceed the traditional light trapping limit is that the active region of the solar cell must possess a local density of optical states (LDOS) higher than that of the corresponding, bulk material. Additionally, we show that in addition to having an increased density of states, the absorber must have an appropriate incoupling mechanism to transfer light from free space into the optical modes of the device. We outline a portfolio of new solar cell designs that have potential to exceed the traditional light trapping limit and numerically validate our predictions for select cases.

We emphasize the importance of thinking about light trapping in terms of maximizing the optical modes of the device and efficiently coupling light into them from free space. To further explore these two concepts, we optimize patterns of superlattices of air holes in thin slabs of Si and show that by adding a roughened incoupling layer the total absorbed current can be increased synergistically. We suggest that the addition of a random scattering surface to a periodic patterning can increase incoupling by lifting the constraint of selective mode occupation associated with periodic systems.

Lastly, through experiment and simulation, we investigate a potential high efficiency solar cell architecture that can be improved with the nanophotonic light trapping concepts described in this thesis. Optically thin GaAs solar cells are prepared by the epitaxial liftoff process by removal from their growth substrate and addition of a metallic back reflector. A process of depositing large area nano patterns on the surface of the cells is developed using nano imprint lithography and implemented on the thin GaAs cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is shown that 2D lattice gratings, despite being placed outside the waveguide region, exhibit sufficiently strong coupling coefficients that optical modes rapidly couple transversely into the etched grating region, yielding high coupling coefficients of 270cm-1. This performance allows mode-hop-free lasing operation in DBR structures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase perovskite structure Pb(1-x)Ba(x)TiO(3) thin films (x = 0.30, 0.50 and 0.70) were deposited on Pt/Ti/SiO(2)/Si substrates by the spin-coating technique. The dielectric study reveals that the thin films undergo a diffuse type ferroelectric phase transition, which shows a broad peak. An increase of the diffusivity degree with the increasing Barium contents was observed, and it was associated to a grain decrease in the studied composition range. The temperature dependence of the phonon frequencies was used to characterize the phase transition temperatures. Raman modes persist above tetragonal to cubic phase transition temperature, although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of breakdown of the local cubic symmetry by chemical disorder. The absence of a well-defined transition temperature and the presence of broad bands in some interval temperature above FE-PE phase transition temperature Suggested a diffuse type phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in these thin films. The leakage Current density of the PBT thin films was studied at different temperatures and the data follow the Schottky emission model. Through this analysis the Schottky barrier height values 0.75, 0.53 and 0.34 eV were obtained to the PBT70, PBT50 and PBT30 thin films, respectively. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Single-phase Ba0.5Sr0.5(Ti0.80Sn0.20)O-3 (BST:Sn) powders with perovskite structure were prepared by the soft chemical method. Infrared data indicates that the BST:Sn powder is carbonate free while Raman analysis has shown that the transversal (TO) and longitudinal (LO) optical modes tend to disappear with tin addition. The electron diffraction pattern of the BST:Sn powder showed an interplanar distance of 3.94 angstrom characteristic of the pseudo-cubic structure. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have carried out dielectric and Raman spectroscopy studies at the 298-623 K temperature range in polycrystalline Pb0.70Sr0.30TiO3 thin films grown by a soft chemical method. The diffuse phase-transition behavior of the thin films was observed by means of the dielectric constant versus temperature curves, which show a broad peak. Such behavior was confirmed later by Raman spectroscopy measurements up to 823 K, indicating that a diffuselike phase transition takes place at around 548-573 K. The damping factor of the E(1TO) soft mode was calculated using the damped simple harmonic oscillator model. on the other hand, Raman modes persist above the tetragonal to cubic phase transition temperature although all optical modes should be Raman inactive. The origin of these modes was interpreted in terms of a breakdown of the microscopic local cubic symmetry by chemical disorder. The lack of a well-defined transition temperature and the presence of broad bands at some temperature interval above the ferroelectric-paraelectric phase-transition temperature suggested a diffuse nature of the phase transition. This result corroborates the dielectric constant versus temperature data, which showed a broad ferroelectric phase transition in this thin film. (C) 2004 American Institute of Physics.