969 resultados para Optical character recognition
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
The effectiveness of linear matched filters for improved character discrimination in presence of random noise and poorly defined characters has been investigated. We have found that although the performance of the filter in presence of random noise is reasonably good (16 dB gain in signal-to-noise-ratio) its performance is poor when the unknown character is distorted (linear shift and rotation).
Resumo:
En esta tesis de máster se presenta una metodología para el análisis automatizado de las señales del sonar de largo alcance y una aplicación basada en la técnica de reconocimiento óptico de Optical Character Recognition, caracteres (OCR). La primera contribución consiste en el análisis de imágenes de sonar mediante técnicas de procesamiento de imágenes. En este proceso, para cada imagen de sonar se extraen y se analizan las regiones medibles, obteniendo para cada región un conjunto de características. Con la ayuda de los expertos, cada región es identi cada en una clase (atún o no-atún). De este modo, mediante el aprendizaje supervisado se genera la base de datos y, a su vez, se obtiene un modelo de clasi cación. La segunda contribución es una aplicación OCR que reconoce y extrae de las capturas de pantalla de imágenes de sonar, los caracteres alfanuméricos correspondientes a los parámetros de situación (velocidad, rumbo, localización GPS) y la confi guración de sonar (ganancias, inclinación, ancho del haz). El objetivo de este proceso es el de maximizar la e ficiencia en la detección de atún en el Golfo de Vizcaya y dar el primer paso hacia el desarrollo de un índice de abundancia de esta especie, el cual esté basado en el procesamiento automático de las imágenes de sonar grabadas a bordo de la ota pesquera durante su actividad pesquera rutinaria.
Resumo:
Optical Character Recognition plays an important role in Digital Image Processing and Pattern Recognition. Even though ambient study had been performed on foreign languages like Chinese and Japanese, effort on Indian script is still immature. OCR in Malayalam language is more complex as it is enriched with largest number of characters among all Indian languages. The challenge of recognition of characters is even high in handwritten domain, due to the varying writing style of each individual. In this paper we propose a system for recognition of offline handwritten Malayalam vowels. The proposed method uses Chain code and Image Centroid for the purpose of extracting features and a two layer feed forward network with scaled conjugate gradient for classification
Resumo:
The Amharic language is the Official language of over 70 million people mainly in Ethiopia. An extensive literature survey and the government report reveal no single Amharic character recognition is found in the country. The Amharic script has 33 basic characters each with seven orders giving 310 distinct characters, including numbers and punctuation symbols. The characters are visually similar; there is a typeface, but no capitalization. Beside this there is no any standard font to use the language in the computer but they use different fonts developed by different stakeholders without keeping a standard on their own way and interest and this create a problem of incompatibility between different fonts and documents.This project is to investigate the reason why Amharic optical character recognition is not addressed by local and international researchers and developers and finally to develop Amharic optical character recognition uses the features and facilities of Microsoft windows Vista or 7 using Unicode standard.
Resumo:
"UILU-ENG 78 1737."
Resumo:
Bibliography: p. 14.
Resumo:
Many attempts have been made to overcome problems involved in character recognition which have resulted in the manufacture of character reading machines. An investigation into a new approach to character recognition is described. Features for recognition are Fourier coefficients. These are generated optically by convolving characters with periodic gratings. The development of hardware to enable automatic measurement of contrast and position of periodic shadows produced by the convolution is described. Fourier coefficients of character sets were measured, many of which are tabulated. Their analysis revealed that a few low frequency sampling points could be selected to recognise sets of numerals. Limited treatment is given to show the effect of type face variations on the values of coefficients which culminated in the location of six sampling frequencies used as features to recognise numerals in two type fonts. Finally, the construction of two character recognition machines is compared and contrasted. The first is a pilot plant based on a test bed optical Fourier analyser, while the second is a more streamlined machine d(3signed for high speed reading. Reasons to indicate that the latter machine would be the most suitable to adapt for industrial and commercial applications are discussed.
Resumo:
Machine downtime, whether planned or unplanned, is intuitively costly to manufacturing organisations, but is often very difficult to quantify. The available literature showed that costing processes are rarely undertaken within manufacturing organisations. Where cost analyses have been undertaken, they generally have only valued a small proportion of the affected costs, leading to an overly conservative estimate. This thesis aimed to develop a cost of downtime model, with particular emphasis on the application of the model to Australia Post’s Flat Mail Optical Character Reader (FMOCR). The costing analysis determined a cost of downtime of $5,700,000 per annum, or an average cost of $138 per operational hour. The second section of this work focused on the use of the cost of downtime to objectively determine areas of opportunity for cost reduction on the FMOCR. This was the first time within Post that maintenance costs were considered along side of downtime for determining machine performance. Because of this, the results of the analysis revealed areas which have historically not been targeted for cost reduction. Further exploratory work was undertaken on the Flats Lift Module (FLM) and Auto Induction Station (AIS) Deceleration Belts through the comparison of the results against two additional FMOCR analysis programs. This research has demonstrated the development of a methodical and quantifiable cost of downtime for the FMOCR. This has been the first time that Post has endeavoured to examine the cost of downtime. It is also one of the very few methodologies for valuing downtime costs that has been proposed in literature. The work undertaken has also demonstrated how the cost of downtime can be incorporated into machine performance analysis with specific application to identifying high costs modules. The outcome of this report has both been the methodology for costing downtime, as well as a list of areas for cost reduction. In doing so, this thesis has outlined the two key deliverables presented at the outset of the research.
Resumo:
Several approaches have been proposed to recognize handwritten Bengali characters using different curve fitting algorithms and curvature analysis. In this paper, a new algorithm (Curve-fitting Algorithm) to identify various strokes of a handwritten character is developed. The curve-fitting algorithm helps recognizing various strokes of different patterns (line, quadratic curve) precisely. This reduces the error elimination burden heavily. Implementation of this Modified Syntactic Method demonstrates significant improvement in the recognition of Bengali handwritten characters.
Resumo:
This paper describes a technique for artificial generation of learning and test sample sets suitable for character recognition research. Sample sets of English (Latin), Malayalam, Kannada and Tamil characters are generated easily through their prototype specifications by the endpoint co-ordinates, nature of segments and connectivity.