920 resultados para Optic nerve head
Resumo:
Glaucoma is the second leading cause of blindness worldwide. Often, the optic nerve head (ONH) glaucomatous damage and ONH changes occur prior to visual field loss and are observable in vivo. Thus, digital image analysis is a promising choice for detecting the onset and/or progression of glaucoma. In this paper, we present a new framework for detecting glaucomatous changes in the ONH of an eye using the method of proper orthogonal decomposition (POD). A baseline topograph subspace was constructed for each eye to describe the structure of the ONH of the eye at a reference/baseline condition using POD. Any glaucomatous changes in the ONH of the eye present during a follow-up exam were estimated by comparing the follow-up ONH topography with its baseline topograph subspace representation. Image correspondence measures of L-1-norm and L-2-norm, correlation, and image Euclidean distance (IMED) were used to quantify the ONH changes. An ONH topographic library built from the Louisiana State University Experimental Glaucoma study was used to evaluate the performance of the proposed method. The area under the receiver operating characteristic curves (AUCs) was used to compare the diagnostic performance of the POD-induced parameters with the parameters of the topographic change analysis (TCA) method. The IMED and L-2-norm parameters in the POD framework provided the highest AUC of 0.94 at 10 degrees. field of imaging and 0.91 at 15 degrees. field of imaging compared to the TCA parameters with an AUC of 0.86 and 0.88, respectively. The proposed POD framework captures the instrument measurement variability and inherent structure variability and shows promise for improving our ability to detect glaucomatous change over time in glaucoma management.
Resumo:
Purpose: The authors estimated the retinal nerve fiber layer height (RNFLH) measurements in patients with glaucoma compared with those in age-matched healthy subjects as obtained by the laser scanning tomography and assessed the relationship between RNFLH measurements and optic and visual field status. Methods: Parameters of optic nerve head topography and RNFLH were evaluated in 125 eyes of 21 healthy subjects and 104 patients with glaucoma using the Heidelberg Retina Tomograph ([HRT] Heidelberg Engineering GmbH, Heidelberg, Germany) for the entire disc area and for the superior 70°(50°temporal and 20°nasal to the vertical midline) and inferior 70°sectors of the optic disc. The mean deviation of the visual field, as determined by the Humphrey program 24-2 (Humphrey Instruments, Inc., San Leonardo, CA, U.S.A) was calculated in the entire field and in the superior and inferior Bjerrum area. Result: Retinal nerve fiber layer height parameters (mean RNFLH and RNFL cross-sectional area) were decreased significantly in patients with glaucoma compared with healthy individuals. Retinal nerve fiber layer height parameters was correlated strongly with rim volume, rim area, and cup/disc area ratio. Of the various topography measures, retinal nerve fiber layer (RNFL) parameters and cup/disc area ratio showed the strongest correlation with visual field mean deviation in patients with glaucoma. Conclusion: Retinal nerve fiber layer height measures were reduced substantially in patients with glaucoma compared with age-matched healthy subjects. Retinal nerve fiber layer height was correlated strongly with topographic optic disc parameters and visual field changes in patients with glaucoma.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
Resumo:
BACKGROUND It has been suggested that sleep apnea syndrome may play a role in normal-tension glaucoma contributing to optic nerve damage. The purpose of this study was to evaluate if optic nerve and visual field parameters in individuals with sleep apnea syndrome differ from those in controls. PATIENTS AND METHODS From the records of the sleep laboratory at the University Hospital in Bern, Switzerland, we recruited consecutive patients with severe sleep apnea syndrome proven by polysomnography, apnea-hypopnea index >20, as well as no sleep apnea controls with apnea-hypopnea index <10. Participants had to be unknown to the ophtalmology department and had to have no recent eye examination in the medical history. All participants underwent a comprehensive eye examination, scanning laser polarimetry (GDx VCC, Carl Zeiss Meditec, Dublin, California), scanning laser ophthalmoscopy (Heidelberg Retina Tomograph II, HRT II), and automated perimetry (Octopus 101 Programm G2, Haag-Streit Diagnostics, Koeniz, Switzerland). Mean values of the parameters of the two groups were compared by t-test. RESULTS The sleep apnea group consisted of 69 eyes of 35 patients; age 52.7 ± 9.7 years, apnea-hypopnea index 46.1 ± 24.8. As controls served 38 eyes of 19 patients; age 45.8 ± 11.2 years, apnea-hypopnea index 4.8 ± 1.9. A difference was found in mean intraocular pressure, although in a fully overlapping range, sleep apnea group: 15.2 ± 3.1, range 8-22 mmHg, controls: 13.6 ± 2.3, range 9-18 mmHg; p<0.01. None of the extended visual field, optic nerve head (HRT) and retinal nerve fiber layer (GDx VCC) parameters showed a significant difference between the groups. CONCLUSION Visual field, optic nerve head, and retinal nerve fiber layer parameters in patients with sleep apnea did not differ from those in the control group. Our results do not support a pathogenic relationship between sleep apnea syndrome and glaucoma.
Resumo:
Purpose: To determine whether curve-fitting analysis of the ranked segment distributions of topographic optic nerve head (ONH) parameters, derived using the Heidelberg Retina Tomograph (HRT), provide a more effective statistical descriptor to differentiate the normal from the glaucomatous ONH. Methods: The sample comprised of 22 normal control subjects (mean age 66.9 years; S.D. 7.8) and 22 glaucoma patients (mean age 72.1 years; S.D. 6.9) confirmed by reproducible visual field defects on the Humphrey Field Analyser. Three 10°-images of the ONH were obtained using the HRT. The mean topography image was determined and the HRT software was used to calculate the rim volume, rim area to disc area ratio, normalised rim area to disc area ratio and retinal nerve fibre cross-sectional area for each patient at 10°-sectoral intervals. The values were ranked in descending order, and each ranked-segment curve of ordered values was fitted using the least squares method. Results: There was no difference in disc area between the groups. The group mean cup-disc area ratio was significantly lower in the normal group (0.204 ± 0.16) compared with the glaucoma group (0.533 ± 0.083) (p < 0.001). The visual field indices, mean deviation and corrected pattern S.D., were significantly greater (p < 0.001) in the glaucoma group (-9.09 dB ± 3.3 and 7.91 ± 3.4, respectively) compared with the normal group (-0.15 dB ± 0.9 and 0.95 dB ± 0.8, respectively). Univariate linear regression provided the best overall fit to the ranked segment data. The equation parameters of the regression line manually applied to the normalised rim area-disc area and the rim area-disc area ratio data, correctly classified 100% of normal subjects and glaucoma patients. In this study sample, the regression analysis of ranked segment parameters method was more effective than conventional ranked segment analysis, in which glaucoma patients were misclassified in approximately 50% of cases. Further investigation in larger samples will enable the calculation of confidence intervals for normality. These reference standards will then need to be investigated for an independent sample to fully validate the technique. Conclusions: Using a curve-fitting approach to fit ranked segment curves retains information relating to the topographic nature of neural loss. Such methodology appears to overcome some of the deficiencies of conventional ranked segment analysis, and subject to validation in larger scale studies, may potentially be of clinical utility for detecting and monitoring glaucomatous damage. © 2007 The College of Optometrists.
Resumo:
Objective: Acquired pit-like changes of the optic nerve head (APON) are characteristic of glaucomatous damage and may be a sign of a localized susceptibility of the optic nerve. Thus, it is possible that biomechanical properties of the ocular tissues may play a pressure-independent role in the pathogenesis of glaucoma. Corneal hysteresis (CH) appears to provide information of the biomechanical properties of the ocular hull tissues. The purpose of this study was to compare CH of patients with primary open angle glaucoma (POAG) with and without APON. Methods: A prospective case control study was done. POAG patients with and without APON were measured using the Ocular Response Analyzer by masked investigators. Patients in both groups were matched for sex, age, corneal thickness, and type of glaucoma according to maximal IOP (NTG or POAG). Statistical analysis was done using ANOVA. Results: Corneal hysteresis of 16 glaucomatous eyes with APON and 32 controls (glaucoma without APON) was measured. The mean (±SD) CH in the APON group was 8.89 (±1.53) and 10.2 (±1.05) in the control group. The difference is statistically significant (p = 0.005). Conclusions: Corneal hysteresis in POAG patients with APON was significantly lower than in patients that did not have such structural changes of the optic disc. These findings may reflect pressure-independent mechanisms involved in the pathogenesis of such glaucomatous optic nerve changes. © Springer-Verlag 2007.
Resumo:
Early detection of glaucoma relies on a detailed knowledge of how the normal optic nerve (ONH) varies within the population. The purpose of this study focused on two main areas; 1. To explore the optic nerve head appearance in the normal optometric population and compare the south Asian (principally Pakistani) with the European white population, correcting for possible ocular and non-ocular influences in a multiple regression model. The main findings were: • The optic discs of the South Asian (SA) and White European (WE) populations were not statistically different in size. The SA group possessed discs with increased cupping and thinner neuro-retinal rims (NRR) compared with the WE group. The SA group also demonstrated a more vertically oval shape than the WE population. These differences were significant at the p<0.01 level. • The upper limits of inter-eye asymmetry were: ≤0.2 for cup to disc area ratio, and 3mmHg for intra-ocular pressure (IOP) for both ethnic groups and this did not increase with age. IOP asymmetry did not vary with gender, ethnicity or a family history of glaucoma and was independent of ONH asymmetry. ONH and IOP asymmetry are therefore independent risk factors when screening for glaucoma for both ethnic groups. 2. To investigate the validity of the ISNT rule: inferior> superior> nasal> temporal NRR thickness in the optometric population. The main findings were: • As disc size increased the disc become rounder and less vertically oval in shape. Vertically oval discs had thicker superior and inferior NRRs and thinner nasal and temporal NRRs compared with rounder disc shapes due to cup shape being independent of disc shape. Vertically oval discs were therefore more likely to obey the ISNT rule than larger rounder discs. • The ISNT rule has a low adherence in our sample of normal eyes (5.7%). However, by removing the nasal sector to become the IST rule, 74.5% of normal eyes obeyed. SA eyes and female gender were more likely to obey the ISNT rule due to increased disc ovality. The IST rule is independent of disc shape and therefore more suitable for assessing discs from both ethnic backgrounds. Obeying the ISNT rule or IST rule was not related to disc or cup size.
Resumo:
Aims: To investigate the relationship between retinal nerve fibre layer thickness and peripheral neuropathy in patients with Type 2 diabetes, particularly in those who are at higher risk of foot ulceration. Methods: Global and sectoral retinal nerve fibre layer thicknesses were measured at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). The level of neuropathy was assessed in 106 participants (82 with Type 2 diabetes and 24 healthy controls) using the 0–10 neuropathy disability score. Participants were stratified into four neuropathy groups: none (0–2), mild (3–5), moderate (6–8), and severe (9–10). A neuropathy disability score ≥ 6 was used to define those at higher risk of foot ulceration. Multivariable regression analysis was performed to assess the effect of neuropathy disability scores, age, disease duration and retinopathy on RNFL thickness. Results: Inferior (but not global or other sectoral) retinal nerve fibre layer thinning was associated with higher neuropathy disability scores (P = 0.03). The retinal nerve fibre layer was significantly thinner for the group with neuropathy disability scores ≥ 6 in the inferior quadrant (P < 0.005). Age, duration of disease and retinopathy levels did not significantly influence retinal nerve fibre layer thickness. Control participants did not show any significant differences in thickness measurements from the group with diabetes and no neuropathy (P > 0.24 for global and all sectors). Conclusions: Inferior quadrant retinal nerve fibre layer thinning is associated with peripheral neuropathy in patients with Type 2 diabetes, and is more pronounced in those at higher risk of foot ulceration.
Resumo:
Purpose To evaluate the association between retinal nerve fibre layer (RNFL) thickness and diabetic peripheral neuropathy in people with type 2 diabetes, and specifically those at higher risk of foot ulceration. Methods RNFL thicknesses was measured globally and in four quadrants (temporal, superior, nasal and inferior) at 3.45 mm diameter around the optic nerve head using optical coherence tomography (OCT). Severity of neuropathy was assessed using the Neuropathy Disability Score (NDS). Eighty-two participants with type 2 diabetes were stratified according to NDS scores (0-10) as: none, mild, moderate, and severe neuropathy. A control group was additionally included (n=17). Individuals with NDS≥ 6 (moderate and severe neuropathy) have been shown to be at higher risk of foot ulceration. A linear regression model was used to determine the association between RNFL and severity of neuropathy. Age, disease duration and diabetic retinopathy levels were fitted in the models. Independent t-test was employed for comparison between controls and the group without neuropathy, as well as for comparison between groups with higher and lower risk of foot ulceration. Analysis of variance was used to compare across all NDS groups. Results RNFL thickness was significantly associated with NDS in the inferior quadrant (b= -1.46, p=0.03). RNFL thicknesses globally and in superior, temporal and nasal quadrants did not show significant associations with NDS (all p>0.51). These findings were independent of the effect of age, disease duration and retinopathy. RNFL was thinner for the group with NDS ≥ 6 in all quadrants but was significant only inferiorly (p<0.005). RNFL for control participants was not significantly different from the group with diabetes and no neuropathy (superior p=0.07, global and all other quadrants: p>0.23). Mean RNFL thickness was not significantly different between the four NDS groups globally and in all quadrants (p=0.08 for inferior, P>0.14 for all other comparisons). Conclusions Retinal nerve fibre layer thinning is associated with neuropathy in people with type 2 diabetes. This relationship is strongest in the inferior retina and in individuals at higher risk of foot ulceration.
Resumo:
Aims. To evaluate the effect of acute elevation of intraocular pressure (IOP) on optic disc cupping. Methods. 10 emmetropic and 10 myopic volunteers were included in this study. The cup area (CA) and cup volume (CV) of the optic disc were determined with the Heidelberg retina tomograph (HRT). After baseline determinations, a suction cup was used to increase the intraocular pressure (IOP) to 20-25 mmHg above the baseline and HRT images were obtained. Results. Baseline IOP was 13.5 (SD 1.3) mmHg and 12.6 (2.6) mmHg in the emmetropic and myopic groups, respectively. The IOP was elevated to 35.4 (3.3) mmHg and 34.4 (2.5) mmHg in the emmetropic and myopic groups, respectively. When compared with their baseline values, the cupping variables (CA and CV) were significantly increased (p <0.05) during the suction treatment in both emmetropic and myopic subjects. Conclusion. There was a significant enlargement in the optic disc cupping during the artificial increment of intraocular pressure in both emmetropic and myopic eyes. In non-glaucomatous eyes the optic nerve head has a partially dynamic topography dependent upon the level of IOP.
Resumo:
Objective: To detect and quantitate changes in optic nerve morphology after glaucoma surgery using the Heidelberg Retina Tomograph (HRT, Heidelberg Instruments, Heidelberg, Germany). Design: Nonconsecutive observational case series. Participants and Intervention: The authors prospectively enrolled 21 adult patients undergoing incisional glaucoma surgery for progressive glaucoma damage. Quantitative analysis of the optic nerve head by scanning laser tomography and automated perimetry were performed before and after glaucoma surgery. Main Outcome Measures: Changes in optic nerve parameters were subjected to linear regression analysis with respect to percent of postoperative reduction of intraocular pressure (IOP), as well as with respect to age, refraction, preoperative cup:disc ratio, and change in visual field parameters. Results: Seventeen patients had pre- and postoperative images suitable for analysis. Mean IOP at the time of image acquisition before surgery was 30.5 ± 12 mmHg, and after surgery 11.8 ± 5.2 mmHg (mean follow-up, 26 ± 7 weeks). Eleven of 13 (85%) patients having IOP reduction of greater than 40% showed improvement in optic disc parameters. All four patients with less than 25% reduction in IOP showed worsening of most parameters. Changes in optic disc parameters were highly correlated with percent IOP reduction and with age. The parameters in which change most strongly correlated with percent change of IOP were cup area, rim area, cup:disc ratio, and mean cup depth (each, P <0.005). The age of the patient correlated highly with change in maximum cup depth (P <0.005). Refraction and clinically determined cup:disc ratio correlated poorly with changes in measured optic disc parameters. Clinical improvement in visual fields was correlated with the degree of improvement of cup:disc ratio (P = 0.025). Conclusion: Most patients showing a 40% lowering of IOP after glaucoma surgery show improved optic nerve morphology as measured by the HRT. The amount of improvement correlated highly with the percent reduction of IOP.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.