998 resultados para Optic development
Resumo:
The dorsoventral axis of the eye is determined prior to optic cup invagination. A variety of signaling pathways have been implicated in the maintenance of the optic dorsoventral axis, including, but not limited to, bone morphogenetic protein 4, Sonic Hedgehog and retinoic acid. Here, we investigated the possible contribution of Wnt ligands to the establishment or maintenance of the optic axis by analyzing their expression pattern during early chick optic development. We performed in situ hybridization of Wnt-1, Wnt-3a, Wnt-4, and Wnt-5a during the optic vesicle, early optic cup and established optic cup stages and focused our analysis on the optic region. Our data showed that Wnt-5a, but none of the others, is expressed in the dorsal region of the eye starting from the Hamburger and Hamilton stage 14 (HH14). These results are supported by cryosections of the labeled optic region, which further reveal that Wnt-5a is expressed only in the dorsal retinal pigmented epithelium. Thus, we propose that Wnt-5a is a marker for dorsal retinal pigmented epithelium in chick embryos from HH14 to HH19.
Resumo:
The development and fabrication of a thermo-electro-optic sensor using a Mach-Zehnder interferometer and a resistive micro-heater placed in one of the device`s arms is presented. The Mach-Zehnder structure was fabricated on a single crystal silicon substrate using silicon oxynitride and amorphous hydrogenated silicon carbide films to form an anti-resonant reflective optical waveguide. The materials were deposited by Plasma enhanced chemical vapor deposition technique at low temperatures (similar to 320 degrees C). To optimize the heat transfer and increase the device response with current variation, part of the Mach-Zehnder sensor arm was suspended through front-side bulk micromachining of the silicon substrate in a KOH solution. With the temperature variation caused by the micro-heater, the refractive index of the core layer of the optical waveguide changes due to the thermo-optic effect. Since this variation occurs only in one of the Mach-Zehnder`s arm, a phase difference between the arms is produced, leading to electromagnetic interference. In this way, the current applied to the micro-resistor can control the device output optical power. Further, reactive ion etching technique was used in this work to define the device`s geometry, and a study of SF6 based etching rates on different composition of silicon oxynitride films is also presented. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Objective: To investigate clinical and MRI findings that are predictive of both visual loss in patients with pituitary adenomas and visual recovery after treatment. Design: Cohort study. Participants: Thirty patients (60 eyes) with pituitary adenoma. Methods: Patients underwent neuro-ophthalmic examination and MRI before and after optic chiasm decompression. Visual field (VF) was assessed using the mean deviation in standard automated perimetry (SAP) and temporal mean defect, the average of 22 temporal values of the total deviation plot. Tumour size was measured on sagittal and coronal cuts. Results: Visual loss was found in 47 eyes; 35 had optic atrophy (subtle in 9, moderate in 14, and severe in 12). Before treatment, the average SAP mean deviation and temporal mean defect were -11.78 (SD 8.56) dB and -18.66 (SD 11.20) dB, respectively. The chiasm was 17.3 (SD 6.2, range 10-34) mm above the reference line on the sagittal and 21.8 (SD 8.3, range 12-39) mm on the coronal images. Tumour size correlated with the severity of VF defect. VF improvement occurred in 80% of eyes after treatment. The degree of optic atrophy, visual loss, and tumour size were significantly associated with improvement after treatment. Conclusions: The best predictive factor for visual loss was tumour size, and factors related to visual recovery were the degree of optic atrophy, the severity of VF defect, and the tumour size. Diagnosing pituitary adenomas before optic atrophy becomes severe may be related to a better prognosis in such patients.
Resumo:
Purpose To compare the process of myelination in the developing optic nerve (ON) of anaemic rats with the subsequent recovery after being fed an iron-recovery diet. Methods In this study, the morphometrical parameters in the ON were assessed by electron microscopy in Wistar rats that were on an iron-deficient diet for 32 days or for 21 days followed by 10 days on an iron-recovery diet. Qualitative and quantitative analyses were performed using representative electron ultramicrographs. Data were analysed by one-way analysis of variance (ANOVA). When differences were detected, comparisons were made using Tukey`s post hoc test (P<0.05 was considered to be significant). Results Qualitative analysis of the ONs in anaemic and recovered animals showed a higher rate of deformed axons and increased lamellar separation in the myelin sheath when compared with the respective control group. The ON of the anaemic group showed a reduced mean density of myelinated fibres when compared with the control group. The fibre area ratio, axon area ratio, and myelin area ratio of large axons/small axons in the ONs of the control group showed the highest values for the myelin areas, axon areas, and total fibre areas. The control group showed a significantly higher myelin sheath thickness when compared with the anaemic and recovered groups. Conclusions Our data indicate that iron is necessary for maintenance of the ON cell structure, and that morphological damage from iron deficiency is not easily reverted by iron repletion. Eye (2010) 24, 901-908; doi:10.1038/eye.2009.205; published online 14 August 2009
Resumo:
Glutamate receptors have been often associated with developmental processes. We used immunohistochemical techniques to evaluate the expression of the AMPA-type glutamate receptor (GluR) subunits in the chick optic tectum (TeO). Chick embryos from the 5th through the 20th embryonic day (E5-E20) and one-day-old (P1) chicks were used. The three types of immunoreactivity evaluated (GluR1, GluR2/3, and GluR4) had different temporal and spatial expression patterns in the several layers of the TeO. The GluR1 subunit first appeared as moderate staining on E7 and then increased on E9. The mature GluR1 pattern included intense staining only in layer 5 of the TeO. The GluR2/3 subunits presented low expression on E5, which became intense on E7. The staining for GluR2/3 changed to very intense on E14 in tectal layer 13. Staining of layer 13 neurons is the most prominent feature of GluR immunoreactivity in the adult TeO. The GluR4 subunit generally presented the lowest expression starting on E7, which was similar to the adult pattern. Some instances of transient expression of GluR subunits were observed in specific cell populations from E9 through E20. These results demonstrate a differential expression of the GluR subunits in the embryonic TeO, adding information about their possible functions in the developmental processes of the visual system.
Resumo:
This Thesis discussed molecules suitable for photorefractive effect. Out of the molecules studied, only one system was used to make photorefractive polymers system. Other molecules, especially, the electro-optic polymer, Poly(3-methacrloyl-1-(4'-nitro-4-azo-1'-phenyl)phenylalanine-co- methyl methacrylate) can be subjected to more detailed studies to explore the possibilities of using them for electro-optic applications. Though not included in the thesis, the efficient photoconductor, Poly(6-tert-butyl-3- phenyl-3,4-dihydro-2H-1,3-benzoxazine) sensitized with C60, which was described in Chapter 3 showed a low magnitude photovoltaic effect. This hints at the possibility of using this system for organic solar cells also. The thesis presented the initial observation of photorefractive effect in a polybenzoxazine based polymer system. A detailed analysis of the effect of C60, ECZ and DR1 can be carried out to check for the possibility of a high efficiency photorefractive system.
Resumo:
In recent years,photonics has emerged as an essential technology related to such diverse fields like laser technology,fiber optics,communication,optical signal processing,computing,entertainment,consumer electronics etc.Availabilities of semiconductor lasers and low loss fibers have also revolutionized the field of sensor technology including telemetry. There exist fiber optic sensors which are sensitive,reliable.light weight and accurate devices which find applications in wide range of areas like biomedicine,aviation,surgery,pollution monitoring etc.,apart from areas in basic sciences.The present thesis deals with the design,fabrication and characterization of a variety of cost effective and sensitive fiber optic sensors for the trace detetction of certain environment pollutants in air and water.The sensor design is carried out using the techniques like evanescent waves,micro bending and long period gratings.
Resumo:
The design and development of a cost-effective, simple, sensitive and portable LED based fiber optic evanescent wave sensor for simultaneously detecting trace amounts of chromium and nitrite in water are presented. In order to obtain the desired performance, the middle portions of two multimode plastic clad silica fibers are unclad and are used as the sensing elements in the two arms of the sensor. Each of the sensor arms is sourced by separate super bright green LEDs, which are modulated in a time-sharing manner and a single photo detector is employed for detecting these light signals. The performance and characteristics of this system clearly establish the usefulness of the technique for detecting very low concentrations of the dissolved contaminants.
Resumo:
The mechanisms regulating retinal ganglion cell (RGC) development are crucial for retinogenesis and for the establishment of normal vision. However, these mechanisms are only vaguely understood. RGCs are the first neuronal lineage to segregate from pluripotent progenitors in the developing retina. As output neurons, RGCs display developmental features very distinct from those of the other retinal cell types. To better understand RGC development, we have previously constructed a gene regulatory network featuring a hierarchical cascade of transcription factors that ultimately controls the expression of downstream effector genes. This has revealed the existence of a Pou domain transcription factor, Pou4f2, that occupies a key node in the RGC gene regulatory network and that is essential for RGC differentiation. However, little is known about the genes that connect upstream regulatory genes, such as Pou4f2 with downstream effector genes responsible for RGC differentiation. The purpose of this study was to characterize the retinal function of eomesodermin (Eomes), a T-box transcription factor with previously unsuspected roles in retinogenesis. We show that Eomes is expressed in developing RGCs and is a mediator of Pou4f2 function. Pou4f2 directly regulates Eomes expression through a cis-regulatory element within a conserved retinal enhancer. Deleting Eomes in the developing retina causes defects reminiscent of those in Pou4f2(-/-) retinas. Moreover, myelin ensheathment in the optic nerves of Eomes(-/-) embryos is severely impaired, suggesting that Eomes regulates this process. We conclude that Eomes is a crucial regulator positioned immediately downstream of Pou4f2 and is required for RGC differentiation and optic nerve development.
Resumo:
Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4-9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged similar to 171 mg/dl and in the ETHD animals similar to 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection or ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of similar to 145000-165000 axons in MRC, SC and ETLD animals. About 4 % of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axone (P < 0.05) of which about 2.8 % were myelinated. By 30 d of age there was a total of between 75000 90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (similar to 77 %) than in the other groups (about 98 %). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9.
Resumo:
Axonal regeneration of retinal ganglion cells (RGCs) into a normal or pre-degenerated peripheral nerve graft after an optic nerve pre-lesion was investigated. A pre-lesion performed 1-2 weeks before a second lesion has been shown to enhance axonal regeneration in peripheral nerves (PN) but not in optic nerves (ON) in mammals. The lack of such a beneficial pre-lesion effect may be due to the long delay (1-6 weeks) between the two lesions since RGCs and their axons degenerate rapidly 1-2 weeks following axotomy in adult rodents. The present study examined the effects of the proximal and distal ON pre-lesions with a shortened delay (0-8 days) on axonal regeneration of RGCs through a normal or pre-degenerated PN graft. The ON of adult hamsters was transected intraorbitallv at 2 mm. (proximal lesion) or intracranially at 7 mm (distal lesion) from the optic disc. The pre-lesioned ON was re-transected at 0.5 mm from the disc after 0, 1, 2, 4, or 8 days and a normal or a pre-degenerated PN graft was attached onto the ocular stump. The number of RGCs regenerating their injured axons into the PN graft was estimated by retrograde labeling with FluoroGold 4 weeks after grafting. The number of regenerating RGCs decreased significantly when the delay-time increased in animals with both the ON pre-lesions (proximal or distal) compared to control animals without an ON pre-lesion. The proximal ON pre-lesion significantly reduced the number of regenerating RGCs after a delay of 8 days in comparison with the distal lesion. However, this adverse effect can be overcome, to some degree, by a pre-degenerated PN graft applied 2, 4, or 8 days after the distal ON pre-lesion enhanced more RGCs to regenerate than the normal PN graft. Thus, in order to obtain the highest number of regenerating RGCs, a pre-degenerated PN should be grafted immediately after an ON lesion.
Resumo:
Evidence concerning the presence or absence of common neuronglia lineages in the postnatal mammalian central nervous system is still a matter of speculation. We address this problem using optic nerve explants, which show an extremely long survival in culture. Morphological, immunocytochemical and immunochemical methods were applied. The results obtained from in vitro tissue were compared with optic nerves (ONs) and whole-brain samples from animals of different ages. Newborn rat ONs represented the starting material of our tissue culture; they are composed of unmyelinated axons, astrocytes and progenitor cells but devoid of neuronal cell bodies. At this age, Western blots of ONs were positively stained by neurofilament and synapsin I specific antibodies. These bands increased in intensity during postnatal in situ development. In explant cultures, the glia cells reach a stage of functional differentiation and they maintain, together with undifferentiated cells, a complex histotypic organization. After 6 days in vitro, neurofilaments and synapsin I could not be detected on immunoblots, indicating that 1) axonal degeneration was completed, and 2) neuronal somata were absent at the time. Surprisingly, after about 4-5 weeks in culture, a new cell type appeared, which showed characteristics typical of neurons. After 406 days in vitro, neurofilaments and synapsin I were unequivocally detectable on Western blots. Furthermore, both immunocytochemical staining and light and electron microscopic examinations corroborated the presence of this earlier-observed cell type. These in vitro results clearly show the high developmental plasticity of ON progenitor cells, even late in development. The existence of a common neuron-glia precursor, which never gives rise to neurons in situ, is suggested.
Resumo:
Context: Kallmann syndrome (KS), combined pituitary hormone deficiency (CPHD), and septo-optic dysplasia (SOD) all result from development defects of the anterior midline in the human forebrain. Objective: The objective of the study was to investigate whether KS, CPHD, and SOD have shared genetic origins. Design and Participants: A total of 103 patients with either CPHD (n = 35) or SOD (n = 68) were investigated for mutations in genes implicated in the etiology of KS (FGFR1, FGF8, PROKR2, PROK2, and KAL1). Consequences of identified FGFR1, FGF8, and PROKR2 mutations were investigated in vitro. Results: Three patients with SOD had heterozygous mutations in FGFR1; these were either shown to alter receptor signaling (p.S450F, p.P483S) or predicted to affect splicing (c.336C>T, p.T112T). One patient had a synonymous change in FGF8 (c.216G>A, p.T72T) that was shown to affect splicing and ligand signaling activity. Four patients with CPHD/SOD were found to harbor heterozygous rare loss-of-function variants in PROKR2 (p.R85G, p.R85H, p.R268C). Conclusions: Mutations in FGFR1/FGF8/PROKR2 contributed to 7.8% of our patients with CPHD/SOD. These data suggest a significant genetic overlap between conditions affecting the development of anterior midline in the human forebrain.
Resumo:
The major active retinoid, all-trans retinoic acid, has long been recognized as critical for the development of several organs, including the eye. Mutations in STRA6, the gene encoding the cellular receptor for vitamin A, in patients with Matthew-Wood syndrome and anophthalmia/microphthalmia (A/M), have previously demonstrated the importance of retinol metabolism in human eye disease. We used homozygosity mapping combined with next-generation sequencing to interrogate patients with anophthalmia and microphthalmia for new causative genes. We used whole-exome and whole-genome sequencing to study a family with two affected brothers with bilateral A/M and a simplex case with bilateral anophthalmia and hypoplasia of the optic nerve and optic chiasm. Analysis of novel sequence variants revealed homozygosity for two nonsense mutations in ALDH1A3, c.568A>G, predicting p.Lys190*, in the familial cases, and c.1165A>T, predicting p.Lys389*, in the simplex case. Both mutations predict nonsense-mediated decay and complete loss of function. We performed antisense morpholino (MO) studies in Danio rerio to characterize the developmental effects of loss of Aldh1a3 function. MO-injected larvae showed a significant reduction in eye size, and aberrant axonal projections to the tectum were noted. We conclude that ALDH1A3 loss of function causes anophthalmia and aberrant eye development in humans and in animal model systems.