11 resultados para OppNets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

 Security is a major challenge in Opportunistic Networks (OppNets) due to its characteristics of being an open medium with dynamic topology, there is neither a centralized management nor clear lines of defence. A packet dropping attack is one of the major security threats in OppNets as neither source nodes nor destination nodes have any knowledge of when or where a packet will be dropped. In this paper, we present a novel attack and detection mechanism against a special type of packet dropping where the malicious node drops one packet or more and injects a new fake packet instead. Our novel detection mechanism is very powerful and has very high accuracy. It relies on a very simple yet powerful idea; the creation time of each packet. Significant results show this robust mechanism achieves a very high accuracy and detection rate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic Networks (OppNets) are exposed to a variety of attacks, among them are packet dropping attacks. The security challenges in OppNets is to effectively and securely forward data and guarantee their delivery without any loss. Security and trust in OppNets have gained popularity in research because of their inherent features, including frequent partitions, long delays and intermittent connectivity. This paper presents an efficient malicious path and malicious node detection technique against selective packet dropping attacks. In our algorithm we have developed a solid detection mechanism using the Merkle tree hashing technique. The result of malicious path detection is used to build trust by destination nodes for each path, the built trust value of nodes is then used to detect malicious nodes. Simulation results show that the technique accurately detects malicious paths. The results also show that with the increase of simulation time, node detection accuracy also increases as intermediate nodes have more time to establish trust with destination nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Opportunistic Networks aim to set a reliable networks where the nodes has no end-To-end connection and the communication links often suffer from frequent disruption and long delays. The design of the OppNets routing protocols is facing a serious challenges such as the protection of the data confidentiality and integrity. OppNets exploit the characteristics of the human social, such as similarities, daily routines, mobility patterns and interests to perform the message routing and data sharing. Packet dropping attack is one of the hardest attacks in Opportunistic Networks as both the source nodes and the destination nodes have no knowledge of where or when the packet will be dropped. In this paper, we present a new malicious nodes detection technique against packet faking attack where the malicious node drops one or more packets and instead of them injects new fake packets. We have called this novel attack in our previous works a packet faking attack. Each node in Opportunistic Networks can detect and then traceback the malicious nodes based on a solid and powerful idea that is, hash chain techniques. In our hash chain based defense techniques we have two phases. The first phases is to detect the attack, and the second phases is to find the malicious nodes. We have compared our approach with the acknowledgement based mechanisms and the networks coding based mechanism which are well known approaches in the literature. In our simulation, we have achieved a very high node detection accuracy and low false negative rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The increased capabilities (e.g., processing, storage) of portable devices along with the constant need of users to retrieve and send information have introduced a new form of communication. Users can seamlessly exchange data by means of opportunistic contacts among them and this is what characterizes the opportunistic networks (OppNets). OppNets allow users to communicate even when an end-to-end path may not exist between them. Since 2007, there has been a trend to improve the exchange of data by considering social similarity metrics. Social relationships, shared interests, and popularity are examples of such metrics that have been employed successfully: as users interact based on relationships and interests, this information can be used to decide on the best next forwarders of information. This Thesis work combines the features of today's devices found in the regular urban environment with the current social-awareness trend in the context of opportunistic routing. To achieve this goal, this work was divided into di erent tasks that map to a set of speci c objectives, leading to the following contributions: i) an up-to-date opportunistic routing taxonomy; ii) a universal evaluation framework that aids in devising and testing new routing proposals; iii) three social-aware utility functions that consider the dynamic user behavior and can be easily incorporated to other routing proposals; iv) two opportunistic routing proposals based on the users' daily routines and on the content traversing the network and interest of users in such content; and v) a structure analysis of the social-based network formed based on the approaches devised in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opportunistic networks or OppNets refer to a number of wireless nodes opportunistically communicating with each other in a form of “Store-Carry-Forward”. This occurs when they come into contact with each other without proper network infrastructure. In OppNets there is no end-to-end connection between the source node and the destination node. OppNets grow from a single node (seed) to become large networks by inviting new nodes (helpers) to join the network. Due to these characteristics, OppNets are subject to real routing challenges. In this paper, we have presented an overview of the main available three families of OppNet routing protocols. Further, we have evaluated one protocol from each family (Epidemic, Direct Delivery and PRoPHET) in terms of complexity and scalability. Simulation results show that for small and medium complexity, the three protocols perform better than large complexity. As for scalability, simulation results show that Epidemic and PRoPHET perform better than Direct Delivery in terms of delivery rates and delays, but at a very high cost while Direct Delivery achieved lower delivery rates with a low cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opportunistic networks (OppNets) are an interesting topic that are seen to have a promising future. Many protocols have been developed to accommodate the features of OppNets such as frequent partitions, long delays, and no end-to-end path between the source and destination nodes. Embedding security into these protocols is challenging and has taken a lot of attention in research. One of the attacks that OppNets are exposed to is the packet dropping attack, where the malicious node attempts to drop some packets and forwards an incomplete number of packets which results in the distortion of the message. To increase the security levels in OppNets, this paper presents an algorithm developed to detect packet dropping attacks, and finds the malicious node that attempted the attack. The algorithm detects the attack by using an indicative field in the header section of each packet; the indicative field has 3 sub fields - the identification field, the flag field, and the offset field. These 3 fields are used to find if a node receives the complete original number of packets from the previous node. The algorithm will have the advantage of detecting packets dropped by each intermediate node, this helps solve the difficulties of finding malicious nodes by the destination node only.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Opportunistic networks or OppNets refer to a number of wireless nodes opportunistically communicating with each other in a form of “Store–Carry–Forward”. This occurs when they come into contact with each other without proper network infrastructure. OppNets use wireless technologies, such as IEEE 802.11, WiMAX, Bluetooth, and other short-range radio communication. In OppNets, there is no end-to-end connection between the source and the destination nodes, and the nodes usually have high mobility, low density, limited power, short radio range, and often subject to different kinds of attacks by malicious nodes. Due to these characteristics and features, OppNets are subject to serious security challenges. OppNets strongly depend on human interaction; therefore, the success of securing such networks is based on trust between people. This survey includes the security approaches in OppNets and techniques used to increase their security levels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Security is a major challenge in Opportunistic Networks (OppNets) because of its characteristics, such as open medium, dynamic topology, no centralized management and absent clear lines of defense. A packet dropping attack is one of the major security threats in OppNets since neither source nodes nor destination nodes have the knowledge of where or when the packet will be dropped. In our previous novel attack (Packet Faking Attack [1]) we presented a special type of packet dropping where the malicious node drops one or more packets and then injects new fake packets instead. In this paper, we present an efficient detection mechanism against this type of attack where each node can detect the attack instead of the destination node. Our detection mechanism is very powerful and has very high accuracy. It relies on a very simple yet powerful idea, that is, the packet creation time of each packet. Simulation results show this robust mechanism achieves a very high accuracy, detection rate and good network traffic reduction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Security is a major challenge in Opportunistic Networks (OppNets) because of its characteristics, such as open medium, dynamic topology, no centralized management and absent clear lines of defense.A packet dropping attack is one of the major security threats in OppNets since neither source nodes nor destination nodes have the knowledge of where or when the packet will be dropped. In this paper, we present a novel attack and traceback mechanism against a special type of packet dropping where the malicious node drops one or more packets and then injects new fake packets instead. We call this novel attack a Catabolism Attack and we call our novel traceback mechanism against this attack Anabolism Defense. Our novel detection and traceback mechanism is very powerful and has very high accuracy. Each node can detect and then traceback the malicious nodes based on a solid and powerful idea that is, hash chain techniques. In our defense techniques we have two stages. The first stage is to detect the attack, and the second stage is to find the malicious nodes. Simulation results show this robust mechanism achieves a very high accuracy and detection rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Security is a major challenge in Opportunistic Networks because of its characteristics, such as open medium, dynamic topology, no centralized management and absent clear lines of defense. A packet dropping attack is one of the major security threats in OppNets since neither source nodes nor destination nodes have the knowledge of where or when the packet will be dropped. In this paper, we present a malicious nodes detection mechanism against a special type of packet dropping attack where the malicious node drops one or more packets and then injects new fake packets instead. Our novel detection and traceback mechanism is very powerful and has very high accuracy. Each node can detect and then traceback the malicious nodes based on a solid and powerful idea that is, Merkle tree hashing technique. In our defense techniques we have two stages. The first stage is to detect the attack, and the second stage is to find the malicious nodes. We have compared our approach with the acknowledgement based mechanisms and the networks coding based mechanism which are well known approaches in the literature. Simulation results show this robust mechanism achieves a very high accuracy and detection rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

 In this thesis, we have identified a novel attack in OppNets, a special type of packet dropping attack where the malicious node(s) drops one or more packets (not all the packets) and then injects new fake packets instead. We name this novel attack as the Catabolism attack and propose a novel attack detection and traceback approach against this attack referred to as the Anabolism defence. As part of the Anabolism defence approach we have proposed three techniques: time-based, Merkle tree based and Hash chain based techniques for attack detection and malicious node(s) traceback. We provide mathematical models that show our novel detection and traceback mechanisms to be very effective and detailed simulation results show our defence mechanisms to achieve a very high accuracy and detection rate.