996 resultados para Ophthalmic solution
Resumo:
The objective of the current study was to develop and subsequently validate a simple, sensitive and precise reversed-phase LC method for the determination of ciprofloxacin hydrochloride in ophthalmic solution form. The chromatographic separation of ciprofloxacin hydrochloride was achieved on a Symmetry Waters C(18) column using UV detection at 275 nm. The optimized mobile phase consisted of 2.5% acetic acid solution: methanol:acetonitrile (70:15:15, v/v/v). The proposed method provided linear responses within the concentration range 1.0-6.0 mu g mL(-1) for ciprofloxacin hydrochloride. Correlation coefficient (r) for the ciprofloxacin hydrochloride was 0.9994. The precision of the method was demonstrated using intra- and inter-day assay RSD% values which were less than 5% in all instances. No interference from any components of pharmaceutical dosage forms was observed.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The validation of a simple, sensitive and specific agar diffusion bioassay, applying cylinder-plate method, for the determination of the antibiotic azithromycin in ophthalmic solutions is described. Using a strain of Bacillus subtilis ATCC 9372 as the test organism, azithromycin at concentrations ranging from 50.0 to 200.0 μg·mL-1 could be measured in 1.666 7 mg·mL-1 ophthalmic solutions. A prospective validation of the method showed that the method was linear (r = 0.999 9) and precise (RSD = 0.70) and accurate (it measured the added quantities). The results obtained by bioassay method could be statistically calculated by linear parallel model and by means of regression analysis and verified using analysis of variance (ANOVA). We conclude that the microbiological assay is satisfactory for quantification of azithromycin in ophthalmic solutions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: To analyze the conditions, consequences and risks of self-medication in patients attended in ophthalmology emergency room at Hospital das Clínicas de Botucatu (UNESP). Methods: Sixty patients who had used any form of self-medication were studied according: age, sex, professional activity, mainly complain, visual acuity (best-corrected vision), who administrated the self-medication (friends/parents, pharmacy clerk, advertisement, or the person himself), sort of medication or product used (eyedrops/ointments/contact lenses), cost (R$), time expenditure to medical attention, ocular complications, risk of visual loss and final diagnose. Results: The majority of patients with self-medication were male (72%). The mean age was 40,9 years (7-77 years). Patients usually used eyedrops that they had at home and delayed 3 days to the first medical evaluation. The most frequently kind of topical eyedrop used was vasoconstrictor (17%). However, many patients even knew what kind of medication they had dropped in their eyes (21%). The great majority of the patients (68%) were exposed to the risk of visual loss. According to our results, self-medication may cause visual complications in 12% of patients, in which, 42% was related to the contact lenses fit without ophthalmologic assistance. Conclusion: The majory of the patients used medication that they had in home. The topical vasoconstrictor was the most frequently used drug, however, they did not know which medication were dropping in their eyes (21%).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
PURPOSE To determine the safety and efficacy of AL-8309B (tandospirone) in the management of patients with geographic atrophy (GA) secondary to age-related macular degeneration (AMD) and obtain standardized data on GA lesion growth progression. DESIGN Prospective, controlled, double-masked, randomized, multicenter phase 3 clinical trial. METHODS Setting: 48 clinical sites. PATIENTS Patients with GA associated with AMD were enrolled. All patients were followed for a minimum of 30 months, and up to 36 months. Intervention Procedures: Patients were randomized (1:1:1) to receive AL-8309B ophthalmic solution 1.0%, 1.75%, or vehicle, administered as a twice-daily topical ocular drop. MAIN OUTCOME MEASURES The primary efficacy endpoint was mean annualized lesion enlargement from baseline as assessed with fundus autofluorescence (FAF) imaging. RESULTS A total of 768 eyes of 768 patients were enrolled and treated with AL-8309B 1.0% (N=250), AL-8309B 1.75% (N=258), or vehicle (N= 260). An increase in mean lesion size was observed in both the AL-8309B and vehicle treatment groups, and growth rates were similar in all treatment groups. Annualized lesion growth rates were 1.73, 1.76 and 1.71 mm(2) for AL-8309B 1.0%, AL-8309B 1.75%, and vehicle, respectively. CONCLUSIONS AL-8309B 1.0% and 1.75% did not affect lesion growth in eyes with GA secondary to AMD. There were no clinically relevant safety issues identified for AL-8309B. The large natural history dataset from this study is a valuable repository for future comparisons.
Resumo:
To achieve effective drug concentration at the intended site for a sufficient period of time is a requisite desired for many drug formulations. For drugs intended to ocular delivery, its poor bioavailability is due to pre-corneal factors. Most ocular diseases are treated by topical drug application in the form of solution, suspension and ointment. However, such dosage forms are no longer sufficient to combat some ocular diseases. Intravitreal drug injection is the current therapy for disorders in posterior segment. The procedure is associated with a high risk of complications, particularly when frequent, repeated injections are required. Thus, sustained-release technologies are being proposed, and the benefits of using colloidal carriers in intravitreal injections are currently under investigation for posterior drug delivery. This review will discuss recent progress and specific development issues relating to colloidal drug delivery systems, such as liposomes, niosomes, nanoparticles, and microemulsions in ocular drug delivery.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The contact lens represents a well-established important class of biomaterials. This thesis brings together the literature, mostly Japanese and American patents, concerned with an important group of polymers, `rigid gas permeable contact lens materials'. A comparison is made of similarities in the underlying chemical themes, centring on the use of variants of highly branched siloxy compounds with polymerizable methacrylate groups. There is a need for standard techniques to assess laboratory behaviour in relation to in vitro performance. A major part of the present work is dedicated to the establishment of such standardised techniques. It is apparent that property design requirements in this field (i.e. oxygen permeability, surface and mechanical properties) are to some extent conflicting. In principle, the structural approaches used to obtain high oxygen permeability lead to surface properties that are less than ideal in terms of compatibility with tears. PMMA is known to have uniquely good (but not perfect) surface properties in this respect; it has been used as a starting point in attempting to design new materials that possess a more acceptable compromise of transport and surface properties for ocular use. Initial examination of the oxygen permeabilities of relatively simple alkyl methacrylates, show that butyl methacrylate which has a permeability some fifty times greater than PMMA, represents an interesting and hitherto unexplored group of materials for ophthalmic applications. Consideration was similarly given to surface modification techniques that would produce materials having the ability to sustain coherent tear film in the eye without markedly impairing oxygen transport properties. Particular attention is paid to the use of oxygen plasma techniques in this respect. In conclusion, similar design considerations were applied to an extended wear hydrogel lens material in an attempt to overcome mechanical stability deficiencies which manifest themselves lq`in vivo' but not `in vitro'. A relatively simple structure modification, involving steric shielding of the amide substituent group, proved to be an effective solution to the problem.
Resumo:
Purpose: The use of PHMB as a disinfectant in contact lens multipurpose solutions has been at the centre of much debate in recent times, particularly in relation to the issue of solution induced corneal staining. Clinical studies have been carried out which suggest different effects with individual contact lens materials used in combination with specific PHMB containing care regimes. There does not appear to be, however, a reliable analytical technique that would detect and quantify with any degree of accuracy the specific levels of PHMB that are taken up and released from individual solutions by the various contact lens materials. Methods: PHMB is a mixture of positively charged polymer units of varying molecular weight that has maximum absorbance wavelength of 236 nm. On the basis of these properties a range of assays including capillary electrophoresis, HPLC, a nickelnioxime colorimetric technique, mass spectrophotometry, UV spectroscopy and ion chromatography were assessed paying particular attention to each of their constraints and detection levels. Particular interest was focused on the relative advantage of contactless conductivity compared to UV and mass spectrometry detection in capillary electrophoresis (CE). This study provides an overview of the comparative performance of these techniques. Results: The UV absorbance of PHMB solutions, ranging from 0.0625 to 50 ppm was measured at 236 nm. Within this range the calibration curve appears to be linear however, absorption values below 1 ppm (0.0001%) were extremely difficult to reproduce. The concentration of PHMB in solutions is in the range of 0.0002–0.00005% and our investigations suggest that levels of PHMB below 0.0001% (levels encountered in uptake and release studies) can not be accurately estimated, in particular when analysing complex lens care solutions which can contain competitively absorbing, and thus interfering, species in the solution. The use of separative methodologies, such as CE using UV detection alone is similarly limited. Alternative techniques including contactless conductivity detection offer greater discrimination in complex solutions together with the opportunity for dual channel detection. Preliminary results achieved by TraceDec1 contactless conductivity detection, (Gain 150%, Offset 150) in conjunction with the Agilent capillary electrophoresis system using a bare fused silica capillary (extended light path, 50 mid, total length 64.5 cm, effective length 56 cm) and a cationic buffer at pH 3.2, exhibit great potential with reproducible PHMB split peaks. Conclusions: PHMB-based solutions are commonly associated with the potential to invoke corneal staining in combination with certain contact lens materials. However this terminology ‘PHMBbased solution’ is used primarily because PHMB itself has yet to be adequately implicated as the causative agent of the staining and compromised corneal cell integrity. The lack of well characterised adequately sensitive assays, coupled with the range of additional components that characterise individual care solutions pose a major barrier to the investigation of PHMB interactions in the lenswearing eye.
Resumo:
The principle theme of this thesis is the advancement and expansion of ophthalmic research via the collaboration between professional Engineers and professional Optometrists. The aim has been to develop new and novel approaches and solutions to contemporary problems in the field. The work is sub divided into three areas of investigation; 1) High technology systems, 2) Modification of current systems to increase functionality, and 3) Development of smaller more portable and cost effective systems. High Technology Systems: A novel high speed Optical Coherence Tomography (OCT) system with integrated simultaneous high speed photography was developed achieving better operational speed than is currently available commercially. The mechanical design of the system featured a novel 8 axis alignment system. A full set of capture, analysis, and post processing software was developed providing custom analysis systems for ophthalmic OCT imaging, expanding the current capabilities of the technology. A large clinical trial was undertaken to test the dynamics of contact lens edge interaction with the cornea in-vivo. The interaction between lens edge design, lens base curvature, post insertion times and edge positions was investigated. A novel method for correction of optical distortion when assessing lens indentation was also demonstrated. Modification of Current Systems: A commercial autorefractor, the WAM-5500, was modified with the addition of extra hardware and a custom software and firmware solution to produce a system that was capable of measuring dynamic accommodative response to various stimuli in real time. A novel software package to control the data capture process was developed allowing real time monitoring of data by the practitioner, adding considerable functionality of the instrument further to the standard system. The device was used to assess the accommodative response differences between subjects who had worn UV blocking contact lens for 5 years, verses a control group that had not worn UV blocking lenses. While the standard static measurement of accommodation showed no differences between the two groups, it was determined that the UV blocking group did show better accommodative rise and fall times (faster), thus demonstrating the benefits of the modification of this commercially available instrumentation. Portable and Cost effective Systems: A new instrument was developed to expand the capability of the now defunct Keeler Tearscope. A device was developed that provided a similar capability in allowing observation of the reflected mires from the tear film surface, but with the added advantage of being able to record the observations. The device was tested comparatively with the tearscope and other tear film break-up techniques, demonstrating its potential. In Conclusion: This work has successfully demonstrated the advantages of interdisciplinary research between engineering and ophthalmic research has provided new and novel instrumented solutions as well as having added to the sum of scientific understanding in the ophthalmic field.
Resumo:
Fleck and Johnson (Int. J. Mech. Sci. 29 (1987) 507) and Fleck et al. (Proc. Inst. Mech. Eng. 206 (1992) 119) have developed foil rolling models which allow for large deformations in the roll profile, including the possibility that the rolls flatten completely. However, these models require computationally expensive iterative solution techniques. A new approach to the approximate solution of the Fleck et al. (1992) Influence Function Model has been developed using both analytic and approximation techniques. The numerical difficulties arising from solving an integral equation in the flattened region have been reduced by applying an Inverse Hilbert Transform to get an analytic expression for the pressure. The method described in this paper is applicable to cases where there is or there is not a flat region.