993 resultados para Operational safety
Resumo:
The main concern of activities developed in oil and gas well construction is safety. But safety during the well construction process is not a trivial subject. Today risk evaluation approaches are based in static analyses of existent systems. In other words, those approaches do not allow a dynamic analysis that evaluates the risk for each alteration of the context. This paper proposes the use of Quantitative and Dynamic Risk Assessment (QDRA) to assess the degree of safety of each planned job. The QDRA can be understood as a safe job analysis approach, developed with the purpose of quantifying the safety degree in entire well construction and maintenance activities. The QDRA is intended to be used in the planning stages of well construction and maintenance, where the effects of hazard on job sequence are important unknowns. This paper also presents definitions of barrier, and barriers integrated set (BIS), and a modeling technique showing their relationships. (c) 2006 Elsevier B.V. All rights reserved.
Operational safety: Development of electronic system for dynamic balance evaluation of farm tractors
Resumo:
The present study aimed at the development and evaluation of a low cost electronic device in order to provide safety for farm tractor users. The major accident occurrence in agricultural surroundings is from farm tractor side bending. Therefore, this sensor was designed to detect and alert about it. The results were satisfying. © 2013 Taylor & Francis Group.
Resumo:
Energy Department, Office of Operational Safety Programs, Washington, D.C.
Resumo:
"DOE/EV/06020-T5."
Resumo:
The ability to forecast machinery failure is vital to reducing maintenance costs, operation downtime and safety hazards. Recent advances in condition monitoring technologies have given rise to a number of prognostic models for forecasting machinery health based on condition data. Although these models have aided the advancement of the discipline, they have made only a limited contribution to developing an effective machinery health prognostic system. The literature review indicates that there is not yet a prognostic model that directly models and fully utilises suspended condition histories (which are very common in practice since organisations rarely allow their assets to run to failure); that effectively integrates population characteristics into prognostics for longer-range prediction in a probabilistic sense; which deduces the non-linear relationship between measured condition data and actual asset health; and which involves minimal assumptions and requirements. This work presents a novel approach to addressing the above-mentioned challenges. The proposed model consists of a feed-forward neural network, the training targets of which are asset survival probabilities estimated using a variation of the Kaplan-Meier estimator and a degradation-based failure probability density estimator. The adapted Kaplan-Meier estimator is able to model the actual survival status of individual failed units and estimate the survival probability of individual suspended units. The degradation-based failure probability density estimator, on the other hand, extracts population characteristics and computes conditional reliability from available condition histories instead of from reliability data. The estimated survival probability and the relevant condition histories are respectively presented as “training target” and “training input” to the neural network. The trained network is capable of estimating the future survival curve of a unit when a series of condition indices are inputted. Although the concept proposed may be applied to the prognosis of various machine components, rolling element bearings were chosen as the research object because rolling element bearing failure is one of the foremost causes of machinery breakdowns. Computer simulated and industry case study data were used to compare the prognostic performance of the proposed model and four control models, namely: two feed-forward neural networks with the same training function and structure as the proposed model, but neglected suspended histories; a time series prediction recurrent neural network; and a traditional Weibull distribution model. The results support the assertion that the proposed model performs better than the other four models and that it produces adaptive prediction outputs with useful representation of survival probabilities. This work presents a compelling concept for non-parametric data-driven prognosis, and for utilising available asset condition information more fully and accurately. It demonstrates that machinery health can indeed be forecasted. The proposed prognostic technique, together with ongoing advances in sensors and data-fusion techniques, and increasingly comprehensive databases of asset condition data, holds the promise for increased asset availability, maintenance cost effectiveness, operational safety and – ultimately – organisation competitiveness.
Resumo:
Most large cities around the world are undergoing rapid transport sector development to cater for increased urbanization. Subsequently the issues of mobility, access equity, congestion, operational safety and above all environmental sustainability are becoming increasingly crucial in transport planning and policy making. The popular response in addressing these issues has been demand management, through improvement of motorised public transport (MPT) modes (bus, train, tram) and non-motorized transport (NMT) modes (walk, bicycle); improved fuel technology. Relatively little attention has however been given to another readily available and highly sustainable component of the urban transport system, non-motorized public transport (NMPT) such as the pedicab that operates on a commercial basis and serves as an NMT taxi; and has long standing history in many Asian cities; relatively stable in existence in Latin America; and reemerging and expanding in Europe, North America and Australia. Consensus at policy level on the apparent benefits, costs and management approach for NMPT integration has often been a major transport planning problem. Within this context, this research attempts to provide a more complete analysis of the current existence rationale and possible future, or otherwise, of NMPT as a regular public transport system. The analytical process is divided into three major stages. Stage 1 reviews the status and role condition of NMPT as regular public transport on a global scale- in developing cities and developed cities. The review establishes the strong ongoing and future potential role of NMPT in major developing cities. Stage 2 narrows down the status review to a case study city of a developing country in order to facilitate deeper role review and status analysis of the mode. Dhaka, capital city of Bangladesh, has been chosen due to its magnitude of NMPT presence. The review and analysis reveals the multisectoral and dominant role of NMPT in catering for the travel need of Dhaka transport users. The review also indicates ad-hoc, disintegrated policy planning in management of NMPT and the need for a planning framework to facilitate balanced integration between NMPT and MT in future. Stage 3 develops an integrated, multimodal planning framework (IMPF), based on a four-step planning process. This includes defining the purpose and scope of the planning exercise, determining current deficiencies and preferred characteristics for the proposed IMPF, selection of suitable techniques to address the deficiencies and needs of the transport network while laying out the IMPF and finally, development of a delivery plan for the IMPF based on a selected layout technique and integration approach. The output of the exercise is a planning instrument (decision tool) that can be used to assign a road hierarchy in order to allocate appropriate traffic to appropriate network type, particularly to facilitate the operational balance between MT and NMT. The instrument is based on a partial restriction approach of motorised transport (MT) and NMT, structured on the notion of functional hierarchy approach, and distributes/prioritises MT and NMT such that functional needs of the network category is best complemented. The planning instrument based on these processes and principles offers a six-level road hierarchy with a different composition of network-governing attributes and modal priority, for the current Dhaka transport network, in order to facilitate efficient integration of NMT with MT. A case study application of the instrument on a small transport network of Dhaka also demonstrates the utility, flexibility and adoptability of the instrument in logically allocating corridors with particular positions in the road hierarchy paradigm. Although the tool is useful in enabling balanced distribution of NMPT with MT at different network levels, further investigation is required with reference to detailed modal variations, scales and locations of a network to further generalise the framework application.
Resumo:
In embedded systems, the timing behaviour of the control mechanisms are sometimes of critical importance for the operational safety. These high criticality systems require strict compliance with the offline predicted task execution time. The execution of a task when subject to preemption may vary significantly in comparison to its non-preemptive execution. Hence, when preemptive scheduling is required to operate the workload, preemption delay estimation is of paramount importance. In this paper a preemption delay estimation method for floating non-preemptive scheduling policies is presented. This work builds on [1], extending the model and optimising it considerably. The preemption delay function is subject to a major tightness improvement, considering the WCET analysis context. Moreover more information is provided as well in the form of an extrinsic cache misses function, which enables the method to provide a solution in situations where the non-preemptive regions sizes are small. Finally experimental results from the implementation of the proposed solutions in Heptane are provided for real benchmarks which validate the significance of this work.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
This dissertation describes the use of new Technologies of the Areas of Telecommunications, Networks and Industrial Automation for increase of the Operational Safety and obtaining of Operational Improvements in the Platforms Petroliferous Offshore. The presented solution represents the junction of several modules of these areas, making possible the Supervision and Contrai of the Platforms Petroliferous Offshore starting from an Station Onshore, in way similar to a remote contral, by virtue of the visualization possibility and audition of the operational area through cameras and microphones, looking the operator of the system to be "present" in the platform. This way, it diminishes the embarked people's need, increasing the Operational Safety. As consequence, we have the obtaining of Operational Improvements, by virtue of the use of a digital link of large band it releases multi-service. In this link traffic simultaneously digital signs of data (Ethernet Network), telephony (Phone VoIP), image and sound
Resumo:
The accurate identification of features of dynamical grounding systems are extremely important to define the operational safety and proper functioning of electric power systems. Several experimental tests and theoretical investigations have been carried out to obtain characteristics and parameters associated with the technique of grounding. The grounding system involves a lot of non-linear parameters. This paper describes a novel approach for mapping characteristics of dynamical grounding systems using artificial neural networks. The network acts as identifier of structural features of the grounding processes. So that output parameters can be estimated and generalized from an input parameter set. The results obtained by the network are compared with other approaches also used to model grounding systems.
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
Despite the growing concern in seeking more sustainable energy sources, oil demand is likely to grow in coming years. To keep up with this growth, the oil industry has increasingly invested in innovation and efficiency. Knowing that, new technologies have been developed to explore deeper waters, without giving up the best practices in worldwide operational safety. The use of rigid pipelines in deepwater offshore facilities is increasing quickly and because of this, the ways of storing and launching pipe have been studied and perfected. In this paper the Bauschinger effect on API 5L X70 steel was analyzed proving that there was a reduction in yield strength when an effort was applied in a previous direction, then an effort was then applied in the opposite direction. To observe this phenomenon, the tensile test was conducted to determine the mechanical properties of the base metal, such as yield stress, tensile strength, elasticity and maximum tensile, so then compare it with the results obtained in the Bauschinger Effect Test. The analysis results showed that the steel had high resistance, with good plastic deformation capacity without failing, well-defined yield point, showing itself appropriate for the operation of oil and gas pipes
Resumo:
Die (Wieder-)Nutzung auf Schwerkraft basierender Fördertechniken, die insbesondere durch das niedrige Energiepreisniveau in den Jahrzehnten nach dem 2. Weltkrieg in der Tagebautechnik nahezu vollständig verdrängt wurden, ist bei den heutigen wirtschaftlichen Randbedingungen und anzustrebenden ökologischen Standards eine Herausforderung für die bergbautreibende Industrie. Seit Aufnahme der Entwicklung des Förderkonzeptes – Geführte Versturztechnik – Mitte der 1990er Jahre haben sich die Kosten für Rohöl vor Steuern nach dem Tiefstand um das Jahr 1998 bis heute mehr als verdreifacht, alleine seit 2004 mehr als verdoppelt. Gesetzliche Regelwerke wie die europäische IVU-Richtlinie 96/61/EG zur „integrierten Vermeidung und Verminderung der Umweltverschmutzung“ fordern, Genehmigungen nur noch bei Einsatz der besten verfügbaren Techniken (BVT oder BAT: „best available techniques“) zu erteilen. Die Umsetzung in nationale Vorschriften wie das Bundes-Immissionsschutzgesetz und nachgeordnete Regelwerke fordern hierauf aufbauend, dass Umweltbelastungen nicht in andere Medien verlagert werden dürfen. Die Anordnung einer Versturzrinne zur Nutzung von Massenschwerebewegungen am Beispiel von Quarzitabbau im Rheinischen Schiefergebirge bei denen die Förderbezugsebene unterhalb der Strossen liegt, die zur sichern und selektiven Gewinnung des Rohstoffs aufgefahren werden müssen, erfüllt durch Rückgriff auf ein vermeintlich „archaisches“ Förderkonzept durch Nutzung der Schwerkraft die obigen Anforderungen. Offenkundige Umweltbelastungen, die alleine durch die Verbrennung von Dieselkraftstoff und hieraus resultierender Schadstoff- und Wärmeeinträge in die Luft beim verbreiteten Einsatz von SLKW zur Abwärtsförderung entstehen, können erheblich vermindert werden. Der Aspekt der Betriebssicherheit einer solchen Anordnung kann durch Auffahren eines geradlinigen Bauwerks mit an das Fördergut angepassten Dimensionen sowie Einrichtungen zur Beschränkung der kinetischen Energie erreicht werden. Diese stellen auch gleichzeitig sicher, dass die Zerkleinerung des durch die Versturzrinne abwärts transportierten Materials betrieblich zulässige Grenzen nicht überschreitet. Hierfür kann auf das umfangreiche Wissen zu Massenschwerebewegungen Rückgriff genommen werden. Dem Aspekt des Umweltschutzes, der sich in Bezug auf das Medium Luft auf den autochtonen Staub reduziert, kann durch Vorrichtungen zur Staubniederschlagung Rechnung getragen werden. Vertiefende Untersuchungen sind erforderlich, um die mit komplexen, aber erprobten Techniken arbeitende Tagebauindustrie auch in dicht besiedelten Regionen wieder an die Nutzung von Schwerkraft (-gestützten) Fördertechniken heranzuführen. Auch das Konzept – Geführte Versturztechnik – ist auf konkrete Anwendungsfälle hin in Details anzupassen.
Resumo:
Em um mercado de comércio internacional cada vez mais competitivo existe a necessidade de a infraestrutura do sistema portuário brasileiro modernizar-se, tornando-se mais eficiente do ponto de vista operacional e com capacidade para receber navios de maior porte. Neste cenário, as técnicas de projeto de espaços náuticos precisam ser revistas, utilizando-se de ferramentas mais sofisticadas que permitam otimizar os dimensionamentos sem deixar de lado as questões da eficiência e, principalmente, da segurança operacional. O presente trabalho apresenta uma abordagem experimental para análise do projeto das dimensões de canais de acesso e bacias portuárias, fundamentada no desenvolvimento de um simulador de manobras de navios em modelo físico de escala reduzida, denominado Simulador Analógico de Manobras SIAMA 2014. Além disso, é proposto um sistema completo para avaliação das condições de manobrabilidade de espaços náuticos portuários, desde a calibração da ferramenta de simulação, até a verificação de cenários complexos e situações de emergência. O SIAMA 2014 e o sistema desenvolvido foram aplicados em um estudo de caso, que contou com a participação de práticos e autoridades portuárias na realização de simulações de manobras para verificação das condições de atracação no novo berço do Terminal Portuário Marítimo de Ponta da Madeira, em São Luís do Maranhão. Os resultados deste estudo foram apresentados e discutidos, de forma a mostrar a importância da utilização de modelos físicos reduzidos na simulação de manobra de navios.