994 resultados para Operation Band
Resumo:
An X-ray diffraction method, estimating the strain relaxation in an ultrathin layer, has been discussed by using kinematic and dynamical X-ray diffraction (XRD) theory. The characteristic parameter Delta Omega, used as the criterion of the strain relaxation in ultrathin layers, is deduced theoretically. It reveals that Delta Omega should be independent of the layer thickness in a coherently strained layer. By this method, we characterized our ultrathin GaNxAs1-x samples with N contents up to 5%. XRD measurements show that our GaNxAs1-x layers are coherently strained on GaAs even for such a large amount of N. Furthermore, a series of GaNxAs1-x samples with same N contents but different layer thicknesses were also characterized. It was found that the critical thickness (L-c) of GaNAs in the GaAs/GaNAs/GaAs structures determined by XRD measurement was 10 times smaller than the theoretical predictions based on the Matthews and Blakeslee model. This result was also confirmed by in situ observation of reflection high-energy electron diffraction (RHEED) and photoluminescence (PL) measurements. RHEED observation showed that the growth mode of GaNAs layer changed from 2D- to 3D-mode as the layer thickness exceeded L-c. PL measurements showed that the optical properties of GaNAs layers deteriorated rapidly as the layer thickness exceeded L-c. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
A novel compact wideband antenna for wireless local area network (WLAN) applications in the 2.4 GHz band is presented. The proposed low profile antenna of dimensions 15 x 14.5 x 1.6 mm offers 18.6% bandwidth and an average gain of -5 dBi. The antenna can be excited directly using a 50 coaxial probe
Resumo:
Nos últimos anos, com o surgimento de novos serviços e equipamentos para o sistema de comunicação móvel com maiores larguras de banda de operação e ocupando espaços cada vez menores, o desenvolvimento de novas antenas de bandas largas e com dimensões pequenas se tornou um dos principais desafios das pesquisas na área de antenas. Neste trabalho, duas estruturas de antenas de bandas largas e dimensões reduzidas foram analisadas e otimizadas. Na primeira parte, a antena filamentar monopolo dobrado (Wire Built-in Folded Monopole Antenna, W-BFMA) foi investigada e teve sua largura de banda otimizada, conectada a linha de alimentação em diferentes impedâncias. Para modelar a estrutura da antena W-BFMA foi usado o método numérico dos momentos (Method of Moments - MoM), e para sua otimização os métodos: paramétrico, hill climbing e algoritmo genético (AG). Programas computacionais baseados na linguagem Matlab foram desenvolvidos para modelagem, otimização e cálculos das principais curvas características da antena W-BFMA. Na segunda parte, duas diferentes configurações de antenas monopolos planos usando a tecnologia de banda ultra-larga (Ultra- Wideband Antenna, UWB) foram investigadas e otimizadas com a ajuda do programa comercial Computer Simulation Technology (CST) Microwave Studio. Ambas as antenas UWB foram alimentadas por uma linha de microfita (microstrip line) na impedância de 50Ω. A antena UWB que apresentou melhor resultado teve o seu protótipo construído, as principais curvas características, tais como: perda de retorno, ganho, distribuição de corrente e diagrama de radiação foram analisadas. Os resultados simulados foram comparados com resultados obtidos experimentalmente.
Resumo:
Esse trabalho de pesquisa apresenta um estudo detalhado sobre guias de ondas integrados ao substrato (SIW) operando em frequências de micro-ondas com base na teoria de guias de ondas retangulares (RWG). O estudo sobre guias SIW associa equações apresentadas na literatura e utiliza simulações eletromagnéticas para desenvolver um procedimento de projeto bem definido. É considerada a integração entre guias SIW e linhas de transmissão de microfita, projetando-se transições entre essas duas estruturas com o propósito de prover casamento de impedância e de viabilizar a caracterização em frequências de micro-ondas. São apresentadas considerações sobre processos de fabricação de circuitos SIW em substratos constituídos por laminados de alta frequência. Uma vez estabelecidos os procedimentos de fabricação e os critérios de projeto, a tecnologia SIW é aplicada ao projeto de três guias de ondas SIW nas bandas S e X, que foram fabricados empregando laminados de alta-frequência. Foram projetados dois filtros SIW passa-faixa empregando cavidades ressonantes e postes metálicos indutivos. Os dois filtros operam na frequência central de 10,61 GHz, sendo que um deles tem banda de passagem de 7,5%e é de 3ª ordem e o outro filtro tem banda de passagem de 15%, sendo de 5ª ordem. Foram realizadas comparações entre o desempenho simulado e experimental das estruturas SIW projetadas. Os resultados de simulações eletromagnéticas e experimentais demonstraram boa concordância. Os projetos em tecnologia SIW apresentados neste trabalho de pesquisa possuem perdas de retorno melhores que 10 dB na banda de operação e perdas por inserção de 1,0 dB a 1,5 dB. É apresentada a análise da sensibilidade do desempenho dos guias de ondas e filtros SIW projetados a desvios dimensionais típicos do processo de fabricação por microfresagem mecânica. Com os resultados experimentais e de simulação foi possível validar os procedimentos de projeto e de fabricação de circuitos SIW operando em frequências de micro-ondas.
Resumo:
This paper presents a generalized approach to design an electromagnetically coupled microstrip ring antenna for dual-band operation. By widening two opposite sides of a square ring antenna, its fractional bandwidth at the primary resonance mode can be increased significantly so that it may be used for practical applications. By attaching a stub to the inner edge of the side opposite to the feed arm, some of the losses in electrical length caused by widening can be regained. More importantly, this addition also alters the current distribution on the antenna and directs radiations at the second resonant frequency towards boresight. It has also been observed that for the dual frequency configurations studied, the ratio of the resonant frequencies (center dot r(2)center dot center dot r(1)) can range between 1.55 and 2.01. This shows flexibility in designing dual frequency antennas with a desired pair of resonant frequencies.
Resumo:
In this paper, a model for intermediate band solar cells is built based on the generally understood physical concepts ruling semiconductor device operation, with special emphasis on the behavior at low temperature. The model is compared to JL-VOC measurements at concentrations up to about 1000 suns and at temperatures down to 20 K, as well as measurements of the radiative recombination obtained from electroluminescence. The agreement is reasonable. It is found that the main reason for the reduction of open circuit voltage is an operational reduction of the bandgap, but this effect disappears at high concentrations or at low temperatures.
Resumo:
In the framework of the so-called third generation solar cells, three main concepts have been proposed in order to exceed the limiting efficiency of single-gap solar cells: the hot-carrier solar cell, the impact-ionization or multiple-exciton-generation solar cell, and the intermediate-band solar cell. At first sight, the three concepts are different, but in this paper, we illustrate how all these concepts, including the single-gap solar cell, share a common trunk that we call "core photovoltaic material." We demonstrate that each one of these next-generation concepts differentiates in fact from this trunk depending on the hypotheses that are made about the physical principles governing the electron electrochemical potentials. In the process, we also clarify the differences between electron, phonon, and photon chemical potentials (the three fundamental particles involved in the operation of the solar cell). The in-depth discussion of the physics involved about the operation of these cells also provides new insights about the operation of these cells.
Resumo:
The intermediate band solar cell (IBSC) has drawn the attention of the scientific community as a means to achieve high-efficiency solar cells. Complete IBSC devices have been manufactured using quantum dots, highly mismatched alloys, or bulk materials with deep-level impurities. Characterization of these devices has led, among other experimental results, to the demonstration of the two operating principles of an IBSC: the production of the photocurrent from the absorption of two below bandgap energy photons and the preservation of the output voltage of the solar cell. This study offers a thorough compilation of the most relevant reported results for the variety of technologies investigated and provides the reader with an updated record of IBSC experimental achievements. A table condensing the reported experimental results is presented, which provides information at a glance about achievements, as well as pending results, for every studied technology.
Resumo:
In this work we report, for the first time at room temperature, experimental results that prove, simultaneously in the same device, the two main physical principles involved in the operation of intermediate band solar cells: (1) the production of sub-bandgap photocurrent by two optical transitions through the intermediate band; (2) the generation of an output voltage which is not limited by the photon energy absorption threshold. These principles, which had always required cryogenic temperatures to be evidenced all together, are now demonstrated at room temperature on an intermediate band solar cell based on InAs quantum dots with Al0.3Ga0.7As barriers.
Resumo:
Current software tools for documenting and developing models of buildings focus on supporting a single user who is a specialist in the specific software used within their own discipline. Extensions to these tools for use by teams maintain the single discipline view and focus on version and file management. There is a perceived need in industry to have tools that specifically support collaboration among individuals from multiple disciplines with both a graphical representation of the design and a persistent data model. This project involves the development of a prototype of such a software tool. We have identified multi-user 3D virtual worlds as an appropriate software base for the development of a collaborative design tool. These worlds are inherently multi-user and therefore directly support collaboration through a sense of awareness of others in the virtual world, their location within the world, and provide various channels for direct and indirect communication. Such software platforms also provide a 3D building and modelling environment that can be adapted to the needs of the building and construction industry. DesignWorld is a prototype system for collaborative design developed by augmenting the Second Life (SL) commercial software platform1 with a collection web-based tools for communication and design. Agents manage communication between the 3D virtual world and the web-based tools. In addition, agents maintain a persistent external model of designs in the 3D world which can be augmented with data such as relationships, disciplines and versions not usually associated with 3D virtual worlds but required in design scenarios.
Resumo:
The multiport network approach is extended to analyze the behavior of microstrip fractal antennas. The capacitively fedmicrostrip square ring antenna has the side opposite to the feed arm replaced with a fractal Minkowski geometry. Dual frequency operation is achieved by suitably choosing the indentation of this fractal geometry. The width of the two sides adjacent to this is increased to further control the resonant characteristics and the ratio of the two resonance frequencies of this antenna. The impedance matrix for the multiport network model of this antenna is simplified exploiting self-similarity of the geometry with greater accuracy and reduced analysis time. Experimentally validated results confirm utility of the approach in analyzing the input characteristics of similar multi-frequency fractal microstrip antennas with other fractal geometries.
Resumo:
This paper presents analysis and design of multilayer ultra wide band (UWB) power splitter suitable for wireless communications. An UWB power splitter is designed in suspended substrate stripline medium. The quarter wave transformer in the conventional Wilkinson power divider is replaced by broadside coupled lines to achieve tight coupling for broadband operation. The UWB power splitter is analyzed using circuit models of coupled lines and full wave simulator. Experimental results of 3dB power splitter designed using the proposed structure have been verified against the results from circuit simulation and full wave simulation. The return loss is better than 12 dB across the band 3.1GHz to 10.6GHz. Size of the power splitter is 30mm× 20mm×6.38mm.
Resumo:
We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by "class A" dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror. © 2010 Optical Society of America.
Resumo:
We report on the room-temperature continuous-wave (CW) operation of a Ho:YAlO3 laser that is resonantly end pumped at 1.94 mu m by a diode-pumped thulium-doped laser in the same host. Through the use of a 1 at % Ho3+-doped 20-mm-long YAlO3 crystal (b cut), the Ho:YAlO3 laser generated 1 W of linearly polarized (E//c) output at 2118 nm and 0.55 W of E//a output at 2128.5 nm for an incident pump power of 5 W, with an output coupler transmission of 14 and 3%, respectively. An optical-to-optical conversion efficiency of 20% and a slope efficiency of 33% were achieved at 2118 nm corresponding to an incident pump power.