950 resultados para Open-field test
Resumo:
The GPR30 is a novel estrogen receptor (ER) that is a candidate membrane ER based on its binding to 17beta estradiol and its rapid signaling properties such as activation of the extracellular-regulated kinase (ERK) pathway. Its distribution in the mouse limbic system predicts a role for this receptor in the estrogenic modulation of anxiety behaviors in the mouse. A previous study showed that chronic administration of a selective agonist to the GPR30 receptor, G-1, in the female rat can improve spatial memory, suggesting that GPR30 plays a role in hippocampal-dependent cognition. In this study, we investigated the effect of a similar chronic administration of G-1 on behaviors that denote anxiety in adult ovariectomized female mice, using the elevated plus maze (EPM) and the open field test as well as the activation of the ERK pathway in the hippocampus. Although estradiol benzoate had no effect on behaviors in the EPM or the open field, G-1 had an anxiolytic effect solely in the open field that was independent of ERK signaling in either the ventral or dorsal hippocampus. Such an anxiolytic effect may underlie the ability of G-1 to increase spatial memory, by acting on the hippocampus.
Resumo:
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor® (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Resumo:
Epidemiological studies have demonstrated the adverse effects of particulate matter (PM) inhalation on the respiratory and cardiovascular systems. It has been reported that air pollution may affect the central nervous system and decrease cognitive function. In rats, residual oil fly ash (ROFA) instillation causes decreased motor activity and increased lipid peroxidation in the striatum and the cerebellum. Our objective was to determine whether chronic instillation of particles induces changes in learning and memory in rats and whether oxidants in the hippocampus may contribute to these adverse effects. Forty-five-day-old male Wistar rats were exposed to ROFA by intranasal instillation and were treated with N-acetylcysteine (NAC) at 150 mg/kg i.p. for 30 days. Control groups were exposed to ROFA, NAC, or neither. On days 1, 8, and 30 of the protocol, rats were submitted to the open field test to evaluate habituation. After the last open field session, the rats were killed by decapitation. The hippocampus was used to determine lipid peroxidation (LP) by the thiobarbituric acid-reactive substances test. ROFA instillation induced an increase in LP in the hippocampus compared to all treatment groups (p = .012). NAC treatment blocked these changes. All of the treatment groups presented a decrease in the frequency of peripheral walking (p = .001), rearing (p = .001), and exploration (p = .001) over time. Our study demonstrates that exposure to particles for 30 days and/or NAC treatment do not modify habituation to an open field, a simple form of learning and memory in rats, and that oxidative damage induced by ROFA does not modulate these processes.
Resumo:
The endocannabinoid system is involved in the control of many physiological functions, including the control of emotional states. In rodents, previous exposure to an open field increases the anxiety-like behavior in the elevated plus-maze. Anxiolytic-like effects of pharmacological compounds that increase endocannabinoid levels have been well documented. However, these effects are more evident in animals with high anxiety levels. Several studies have described characteristic inverted U-shaped dose-response effects of drugs that modulate the endocannabinoid levels. However, there are no studies showing the effects of different doses of exogenous anandamide, an endocannabinoid, in animal models of anxiety. Thus, in the present study, we determined the dose-response effects of exogenous anandamide at doses of 0.01, 0.1, and 1.0 mg/kg in C57BL/6 mice (N = 10/group) sequentially submitted to the open field and elevated plus-maze. Anandamide was diluted in 0.9% saline, ethyl alcohol, Emulphor® (18:1:1) and administered ip (0.1 mL/10 g body weight); control animals received the same volume of anandamide vehicle. Anandamide at the dose of 0.1 mg/kg (but not of 0.01 or 1 mg/kg) increased (P < 0.05) the time spent and the distance covered in the central zone of the open field, as well as the exploration of the open arms of the elevated plus-maze. Thus, exogenous anandamide, like pharmacological compounds that increase endocannabinoid levels, promoted a characteristic inverted U-shaped dose-response effect in animal models of anxiety. Furthermore, anandamide (0.1 mg/kg) induced an anxiolytic-like effect in the elevated plus-maze (P < 0.05) after exposing the animals to the open field test.
Resumo:
The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) on the central nervous system (CNS) were studied in rats. Behavioural and neurochemical studies were performed. Results show that acute and oral administration of dimethylamine 2,4-D was able to decrease locomotion and rearing frequencies and to increase immobility duration of rats observed in an open-field test. Treatment of rats with p-chlorophenylalanine (PCPA) was unable to change rat's open-field behaviour; 5-hydroxytryptophan (5-HTP) administration not only increased locomotion and rearing frequences but also decreased immobility duration. Pretreatment of the rats with PCPA and 5-HTP decreased and increased dimethylamine 2,4-D effects, respectively. The herbicide was not able to change the striatal levels of dopamine and homovanilic acid but decreased the striatal levels of serotonin (5-HT), as observed for the doses of 100 and 200 mg/kg and increased those of 5-hydroxyindoleacetic acid (5-HIAA) as measured after the 200 mg/kg dose treatment. When the levels of serotonin and 5-HIAA were measured at the brain stem level, only those of 5-HIAA were modified, being increased by diethylamine 2,4-D (60; 100 and 200 mg/kg); this increment on 5-HIAA levels was observed even 1 hr after pesticide administration. Further analysis showed that 2,4-D concentrations chromatographycally detected both in serum and brain of the intoxicated animals were dose-dependent, being found as early as 1 hr after the smaller dose of the herbicide used (10 mg/kg). The results suggest that diethylamine 2,4-D modify 5-HT functional activity within the CNS. Thus, the effects of the herbicide on open-field behaviour of rats could be attributed to a direct or indirect pesticide action on serotoninergic systems.
Resumo:
In animal psychology, the open-field (OF) test is a traditional method for studying different aspects of rodent behavior, with thigmotaxis (i.e., wallseeking behavior) being one of the best validated OF parameters employed to measure emotionality. The main purpose of the present study was to investigate the selection response in mice selectively bred for high and low levels of OF thigmotaxis (the HOFT and LOFT lines, respectively). The mice (N = 2048) were selected for 23 generations, resulting in bidirectional phenotypic divergence between the two lines; that is, the HOFT mice were more thigmotactic (i.e., more emotional) than the LOFT mice across the different generations. The origin of the line difference in thigmotaxis was further investigated by using the crossfostering paradigm, with the results suggesting that the divergence between the two lines was primarily innate in origin and not influenced by differing maternal behavior. The stability of the selection trait was examined by testing the animals at different ages as well as in varying conditions. The results indicated that the line difference in thigmotaxis was not affected by age at the time of testing, and it also persisted in the different OF testing situations as well as during pregnancy and lactation. The examination of a possible coselection of other characteristics revealed that the more thigmotactic HOFT mice lived longer than the less thigmotactic LOFT mice. In addition, the HOFT mice tended to rear and explore less than the LOFT mice, supporting the general assumption that emotionality and exploration are inversely related. The two lines did not generally differ in ambulation and defecation, that is, in the traditional OF indexes of emotionality, conforming to the suggestion that emotionality is a multidimensional construct. The effects of sex on different OF parameters were also assessed, with the results suggesting that among the HOFT and LOFT lines, the female mice were more emotional than the male mice. The examination of the temporal changes in the HOFT and LOFT lines’ OF behavior revealed some contradictory findings that also partially conflicted with general assumptions. Although this study did not show prominent differences in maternal responsiveness between the HOFT and LOFT mothers, the results suggested that the line divergence in emotionality was more pronounced in the presence of a pup after parturition than during pregnancy. The present study clearly demonstrates that OF thigmotaxis is a strong characteristic for producing two diverging lines of mice. The difference in thigmotaxis between the selectively bred HOFT and LOFT mice seemed to be a stable and robust feature of these animals, and it appeared to stem from a genetic background.
Resumo:
The medial septum participates in the modulation of exploratory behavior triggered by novelty. Also, selective lesions of the cholinergic component of the septohippocampal system alter the habituation of rats to an elevated plus-maze without modifying anxiety indices. We investigated the effects of the intraseptal injection of the cholinergic immunotoxin 192 IgG-saporin (SAP) on the behavior of rats in an open-field. Thirty-nine male Wistar rats (weight: 194-230 g) were divided into three groups, non-injected controls and rats injected with either saline (0.5 µl) or SAP (237.5 ng/0.5 µl). Twelve days after surgery, the animals were placed in a square open-field (120 cm) and allowed to freely explore for 5 min. After the test, the rats were killed by decapitation and the septum, hippocampus and frontal cortex were removed and assayed for acetylcholinesterase activity. SAP increased acetylcholinesterase activity in the septum, hippocampus and frontal cortex and decreased the total distance run (9.15 ± 1.51 m) in comparison to controls (13.49 ± 0.91 m). The time spent in the center and at the periphery was not altered by SAP but the distance run was reduced during the first and second minutes (2.43 ± 0.36 and 1.75 ± 0.34 m) compared to controls (4.18 ± 0.26 and 3.14 ± 0.25 m). SAP-treated rats showed decreased but persistent exploration throughout the session. These results suggest that septohippocampal cholinergic mechanisms contribute to at least two critical processes, one related to the motivation to explore new environments and the other to the acquisition and storage of spatial information (i.e., spatial memory).
Resumo:
Background: The bed nucleus of stria terminalis (BNST) is a limbic forebrain structure involved in hypothalamo-pituitary-adrenal axis regulation and stress adaptation. Inappropriate adaptation to stress is thought to compromise the organism's coping mechanisms, which have been implicated in the neurobiology of depression. However, the studies aimed at investigating BNST involvement in depression pathophysiology have yielded contradictory results. Therefore, the objective of the present study was to investigate the effects of temporary acute inactivation of synaptic transmission in the BNST by local microinjection of cobalt chloride (CoCl(2)) in rats subjected to the forced swimming test (FST). Methods: Rats implanted with cannulae aimed at the BNST were submitted to 15 min of forced swimming (pretest). Twenty- four hours later immobility time was registered in a new 5 min forced swimming session (test). Independent groups of rats received bilateral microinjections of CoCl(2) (1 mM/100 nL) before or immediately after pretest or before the test session. Additional groups received the same treatment and were submitted to the open field test to control for unspecific effects on locomotor behavior. Results: CoCl(2) injection into the BNST before either the pretest or test sessions reduced immobility in the FST, suggesting an antidepressant-like effect. No significant effect of CoCl(2) was observed when it was injected into the BNST immediately after pretest. In addition, no effect of BNST inactivation was observed in the open field test. Conclusion: These results suggest that acute reversible inactivation of synaptic transmission in the BNST facilitates adaptation to stress and induces antidepressant-like effects.
Resumo:
A central tenet of life-history theory is the presence of a trade-off between the size and number of offspring that a female can produce for a given clutch. A crucial assumption of this trade-off is that larger offspring perform better than smaller offspring. Despite the importance of this assumption empirical, field-based tests are rare, especially for marine organisms. We tested this assumption for the marine invertebrate, Diplosoma listerianum, a colonial ascidian that commonly occurs in temperate marine communities. Colonies that came from larger larvae had larger feeding structures than colonies that came from smaller larvae. Colonies that came from larger larvae also had higher survival and growth after 2 weeks in the field than colonies that came from smaller larvae. However, after 3 weeks in the field the colonies began to fragment and we could not detect an effect of larval size. We suggest that offspring size can have strong effects on the initial recruitment of D. listerianum but because of the tendency of this species to fragment, offspring size effects are less persistent in this species than in others.
Resumo:
A migration of Helicoverpa punctigera (Wallengren), Heliothis punctifera (Walker) and Agrotis munda Walker was tracked from Cameron Corner (29degrees00'S, 141degrees00'E) in inland Australia to the Wilcannia region, approximately 400 km to the south-east. A relatively isolated source population was located using a distribution model to predict winter breeding, and confirmed by surveys using sweep netting for larvae. When a synoptic weather pattern likely to produce suitable conditions for migration developed, moths were trapped in the source region. The next morning a simulation model of migration using wind-field data generated by a numerical weather-prediction model was run. Surveys using sweep netting for larvae, trapping and flush counts were then conducted in and around the predicted moth fallout area, approximately 400 km to the south-east. Pollen carried on the probosces of moths caught in this area was compared with that on moths caught in the source area. The survey data and pollen comparisons provided evidence that migration had occurred, and that the migration model gave accurate estimation of the fallout region. The ecological and economic implications of such migrations are discussed.
Resumo:
This study assesses gender differences in spatial and non-spatial relational learning and memory in adult humans behaving freely in a real-world, open-field environment. In Experiment 1, we tested the use of proximal landmarks as conditional cues allowing subjects to predict the location of rewards hidden in one of two sets of three distinct locations. Subjects were tested in two different conditions: (1) when local visual cues marked the potentially-rewarded locations, and (2) when no local visual cues marked the potentially-rewarded locations. We found that only 17 of 20 adults (8 males, 9 females) used the proximal landmarks to predict the locations of the rewards. Although females exhibited higher exploratory behavior at the beginning of testing, males and females discriminated the potentially-rewarded locations similarly when local visual cues were present. Interestingly, when the spatial and local information conflicted in predicting the reward locations, males considered both spatial and local information, whereas females ignored the spatial information. However, in the absence of local visual cues females discriminated the potentially-rewarded locations as well as males. In Experiment 2, subjects (9 males, 9 females) were tested with three asymmetrically-arranged rewarded locations, which were marked by local cues on alternate trials. Again, females discriminated the rewarded locations as well as males in the presence or absence of local cues. In sum, although particular aspects of task performance might differ between genders, we found no evidence that women have poorer allocentric spatial relational learning and memory abilities than men in a real-world, open-field environment.
Resumo:
This report addresses the field testing and analysis of those results to establish the behavior of the original Clive Road Bridge that carried highway traffic over Interstate 80 (I-80) in the northwest region of Des Moines, Iowa. The bridge was load tested in 1959, shortly after its construction and in 1993, just prior to its demolition. This report presents some of the results from both field tests, finite element predictions of the behavior of aluminum bridge girders, and load distribution studies.
Resumo:
Rats implanted bilaterally with cannulae in the CA1 region of the dorsal hippocampus or the entorhinal cortex were submitted to either a one-trial inhibitory avoidance task, or to 5 min of habituation to an open field. Immediately after training, they received intrahippocampal or intraentorhinal 0.5-µl infusions of saline, of a vehicle (2% dimethylsulfoxide in saline), of the glutamatergic N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphono pentanoic acid (AP5), of the protein kinase A inhibitor Rp-cAMPs (0.5 µg/side), of the calcium-calmodulin protein kinase II inhibitor KN-62, of the dopaminergic D1 antagonist SCH23390, or of the mitogen-activated protein kinase kinase inhibitor PD098059. Animals were tested in each task 24 h after training. Intrahippocampal KN-62 was amnestic for habituation; none of the other treatments had any effect on the retention of this task. In contrast, all of them strongly affected memory of the avoidance task. Intrahippocampal Rp-cAMPs, KN-62 and AP5, and intraentorhinal Rp-cAMPs, KN-62, PD098059 and SCH23390 caused retrograde amnesia. In view of the known actions of the treatments used, the present findings point to important biochemical differences in memory consolidation processes of the two tasks.