439 resultados para Ontologies
Resumo:
To date, automatic recognition of semantic information such as salient objects and mid-level concepts from images is a challenging task. Since real-world objects tend to exist in a context within their environment, the computer vision researchers have increasingly incorporated contextual information for improving object recognition. In this paper, we present a method to build a visual contextual ontology from salient objects descriptions for image annotation. The ontologies include not only partOf/kindOf relations, but also spatial and co-occurrence relations. A two-step image annotation algorithm is also proposed based on ontology relations and probabilistic inference. Different from most of the existing work, we specially exploit how to combine representation of ontology, contextual knowledge and probabilistic inference. The experiments show that image annotation results are improved in the LabelMe dataset.
Resumo:
Since its debut in 2001 Wikipedia has attracted the attention of many researchers in different fields. In recent years researchers in the area of ontology learning have realised the huge potential of Wikipedia as a source of semi-structured knowledge and several systems have used it as their main source of knowledge. However, the techniques used to extract semantic information vary greatly, as do the resulting ontologies. This paper introduces a framework to compare ontology learning systems that use Wikipedia as their main source of knowledge. Six prominent systems are compared and contrasted using the framework.
Resumo:
Relevance feature and ontology are two core components to learn personalized ontologies for concept-based retrievals. However, how to associate user native information with common knowledge is an urgent issue. This paper proposes a sound solution by matching relevance feature mined from local instances with concepts existing in a global knowledge base. The matched concepts and their relations are used to learn personalized ontologies. The proposed method is evaluated elaborately by comparing it against three benchmark models. The evaluation demonstrates the matching is successful by achieving remarkable improvements in information filtering measurements.
Resumo:
The digital management of collections in museums, archives, libraries and galleries is an increasingly important part of cultural heritage studies. This paper describes a representation for folk song metadata, based on the Web Ontology Language (OWL) implementation of the CIDOC Conceptual Reference Model. The OWL representation facilitates encoding and reasoning over a genre ontology, while the CIDOC model enables a representation of complex spatial containment and proximity relations among geographic regions. It is shown how complex queries of folk song metadata, relying on inference and not only retrieval, can be expressed in OWL and solved using a description logic reasoner.
Resumo:
370 p.
Resumo:
With the continuous changes in application requirements of the enterprises, Web resources must be updated, so do the underlying ontologies that are associated with the Web resources. In the situation, it is very challenging for ontological engineers to specify the changes of ontologies, keep their consistencies and achieve semantic query of Web resources based on the evolving ontologies. We propose a construct called Prioritized Knowledge Base (PKB) based on SHOQ(D) description logic, and discuss some properties of PKB.PKB can be used for describing the evolutions and updates of ontologies with conflicting information. Furthermore, we develop some algorithms for checking conflict rules and performing semantic query based on PKB.
Resumo:
Soldatova, L. N. and King R. D. (2005) Are the Current Ontologies used in Biology Good Ontologies? Nature Biotechnology 23:1095-1098
Resumo:
BACKGROUND: The wealth of phenotypic descriptions documented in the published articles, monographs, and dissertations of phylogenetic systematics is traditionally reported in a free-text format, and it is therefore largely inaccessible for linkage to biological databases for genetics, development, and phenotypes, and difficult to manage for large-scale integrative work. The Phenoscape project aims to represent these complex and detailed descriptions with rich and formal semantics that are amenable to computation and integration with phenotype data from other fields of biology. This entails reconceptualizing the traditional free-text characters into the computable Entity-Quality (EQ) formalism using ontologies. METHODOLOGY/PRINCIPAL FINDINGS: We used ontologies and the EQ formalism to curate a collection of 47 phylogenetic studies on ostariophysan fishes (including catfishes, characins, minnows, knifefishes) and their relatives with the goal of integrating these complex phenotype descriptions with information from an existing model organism database (zebrafish, http://zfin.org). We developed a curation workflow for the collection of character, taxonomic and specimen data from these publications. A total of 4,617 phenotypic characters (10,512 states) for 3,449 taxa, primarily species, were curated into EQ formalism (for a total of 12,861 EQ statements) using anatomical and taxonomic terms from teleost-specific ontologies (Teleost Anatomy Ontology and Teleost Taxonomy Ontology) in combination with terms from a quality ontology (Phenotype and Trait Ontology). Standards and guidelines for consistently and accurately representing phenotypes were developed in response to the challenges that were evident from two annotation experiments and from feedback from curators. CONCLUSIONS/SIGNIFICANCE: The challenges we encountered and many of the curation standards and methods for improving consistency that we developed are generally applicable to any effort to represent phenotypes using ontologies. This is because an ontological representation of the detailed variations in phenotype, whether between mutant or wildtype, among individual humans, or across the diversity of species, requires a process by which a precise combination of terms from domain ontologies are selected and organized according to logical relations. The efficiencies that we have developed in this process will be useful for any attempt to annotate complex phenotypic descriptions using ontologies. We also discuss some ramifications of EQ representation for the domain of systematics.