920 resultados para Online generation of trajectories
Resumo:
Neste trabalho estuda-se a geração de trajectórias em tempo real de um robô quadrúpede. As trajectórias podem dividir-se em duas componentes: rítmica e discreta. A componente rítmica das trajectórias é modelada por uma rede de oito osciladores acoplados, com simetria 4 2 Z Z . Cada oscilador é modelado matematicamente por um sistema de Equações Diferenciais Ordinárias. A referida rede foi proposta por Golubitsky, Stewart, Buono e Collins (1999, 2000), para gerar os passos locomotores de animais quadrúpedes. O trabalho constitui a primeira aplicação desta rede à geração de trajectórias de robôs quadrúpedes. A derivação deste modelo baseia-se na biologia, onde se crê que Geradores Centrais de Padrões de locomoção (CPGs), constituídos por redes neuronais, geram os ritmos associados aos passos locomotores dos animais. O modelo proposto gera soluções periódicas identificadas com os padrões locomotores quadrúpedes, como o andar, o saltar, o galopar, entre outros. A componente discreta das trajectórias dos robôs usa-se para ajustar a parte rítmica das trajectórias. Este tipo de abordagem é útil no controlo da locomoção em terrenos irregulares, em locomoção guiada (por exemplo, mover as pernas enquanto desempenha tarefas discretas para colocar as pernas em localizações específicas) e em percussão. Simulou-se numericamente o modelo de CPG usando o oscilador de Hopf para modelar a parte rítmica do movimento e um modelo inspirado no modelo VITE para modelar a parte discreta do movimento. Variou-se o parâmetro g e mediram-se a amplitude e a frequência das soluções periódicas identificadas com o passo locomotor quadrúpede Trot, para variação deste parâmetro. A parte discreta foi inserida na parte rítmica de duas formas distintas: (a) como um offset, (b) somada às equações que geram a parte rítmica. Os resultados obtidos para o caso (a), revelam que a amplitude e a frequência se mantêm constantes em função de g. Os resultados obtidos para o caso (b) revelam que a amplitude e a frequência aumentam até um determinado valor de g e depois diminuem à medida que o g aumenta, numa curva quase sinusoidal. A variação da amplitude das soluções periódicas traduz-se numa variação directamente proporcional na extensão do movimento do robô. A velocidade da locomoção do robô varia com a frequência das soluções periódicas, que são identificadas com passos locomotores quadrúpedes.
Resumo:
A geração de trajectórias de robôs em tempo real é uma tarefa muito complexa, não
existindo ainda um algoritmo que a permita resolver de forma eficaz. De facto, há
controladores eficientes para trajectórias previamente definidas, todavia, a adaptação a
variações imprevisíveis, como sendo terrenos irregulares ou obstáculos, constitui ainda um
problema em aberto na geração de trajectórias em tempo real de robôs.
Neste trabalho apresentam-se modelos de geradores centrais de padrões de locomoção
(CPGs), inspirados na biologia, que geram os ritmos locomotores num robô quadrúpede.
Os CPGs são modelados matematicamente por sistemas acoplados de células (ou
neurónios), sendo a dinâmica de cada célula dada por um sistema de equações diferenciais
ordinárias não lineares. Assume-se que as trajectórias dos robôs são constituídas por esta
parte rítmica e por uma parte discreta. A parte discreta pode ser embebida na parte rítmica,
(a.1) como um offset ou (a.2) adicionada às expressões rítmicas, ou (b) pode ser calculada
independentemente e adicionada exactamente antes do envio dos sinais para as articulações
do robô. A parte discreta permite inserir no passo locomotor uma perturbação, que poderá
estar associada à locomoção em terrenos irregulares ou à existência de obstáculos na
trajectória do robô. Para se proceder á análise do sistema com parte discreta, será variado o
parâmetro g. O parâmetro g, presente nas equações da parte discreta, representa o offset do
sinal após a inclusão da parte discreta.
Revê-se a teoria de bifurcação e simetria que permite a classificação das soluções
periódicas produzidas pelos modelos de CPGs com passos locomotores quadrúpedes. Nas
simulações numéricas, usam-se as equações de Morris-Lecar e o oscilador de Hopf como
modelos da dinâmica interna de cada célula para a parte rítmica. A parte discreta é
modelada por um sistema inspirado no modelo VITE. Medem-se a amplitude e a
frequência de dois passos locomotores para variação do parâmetro g, no intervalo [-5;5].
Consideram-se duas formas distintas de incluir a parte discreta na parte rítmica: (a) como
um (a.1) offset ou (a.2) somada nas expressões que modelam a parte rítmica, e (b) somada
ao sinal da parte rítmica antes de ser enviado às articulações do robô. No caso (a.1),
considerando o oscilador de Hopf como dinâmica interna das células, verifica-se que a amplitude e frequência se mantêm constantes para -5
Resumo:
Magdeburg, Univ., Fak. für Informatik, Diss., 2011
Resumo:
Magdeburg, Univ., Med. Fak., Diss., 2013
Resumo:
Hepatic angiosarcoma (AS) is a rare and highly aggressive tumor of endothelial origin with dismal prognosis. Studies of the molecular biology of AS and treatment options are limited as animal models are rare. We have previously shown that inducible knockout of Notch1 in mice leads to spontaneous formation of hepatic AS. The aims of this study were to: (1) establish and characterize a cell line derived from this murine AS, (2) identify molecular pathways involved in the pathogenesis and potential therapeutic targets, and (3) generate a tumor transplantation model. AS cells retained specific endothelial properties such as tube formation activity, as well as expression of CD31 and Von Willebrand factor. However, electron microscopy analysis revealed signs of dedifferentiation with loss of fenestrae and loss of contact inhibition. Microarray and pathway analysis showed substantial changes in gene expression and revealed activation of the Myc pathway. Exposing the AS cells to sorafenib reduced migration, filopodia dynamics, and cell proliferation but did not induce apoptosis. In addition, sorafenib suppressed ERK phosphorylation and expression of cyclin D2. Injection of AS cells into NOD/SCID mice resulted in formation of undifferentiated tumors, confirming the tumorigenic potential of these cells. In summary, we established and characterized a murine model of spontaneous AS formation and hepatic AS cell lines as a useful in vitro tool. Our data demonstrate antitumor activity of sorafenib in AS cells with potent inhibition of migration, filopodia formation, and cell proliferation, supporting further evaluation of sorafenib as a novel treatment strategy. In addition, AS cell transplantation provides a subcutaneous tumor model useful for in vivo preclinical drug testing.Laboratory Investigation advance online publication, 24 November 2014; doi:10.1038/labinvest.2014.141.
Resumo:
The quadrupole mass spectrometer (QMS) has over 30 years of spaceflight heritage in making important neutral gas and low energy ion observations. Given their geometrical constraints, these instruments are currently operated at the extreme limit of their capabilities. However, a technique called higher order auxiliary excitation provides a set of novel, robust, electronics-based solutions for improving the performance of these sensors. By driving the quadrupole rods with an additional frequency nearly twice that of the normal RF operating frequency, substantially increased abundance sensitivity, maximum attainable mass resolution, and peak stability can be achieved through operation of voltage scan lines through the center of formed upper stability islands. Such improvements are modeled using numerical simulations of ion trajectories in a quadrupole field with and without applied higher order auxiliary excitation. When compared to a traditional QMS with a mass range up to 500Da, sensors can be designed with the same precision electronics to have expected mass ranges beyond 1500Da with a power increase of less than twice that of its heritage implementations.
Resumo:
Intercontinental Ballistic Missiles are capable of placing a nuclear warhead at more than 5,000 km away from its launching base. With the lethal power of a nuclear warhead a whole city could be wiped out by a single weapon causing millions of deaths. This means that the threat posed to any country from a single ICBM captured by a terrorist group or launched by a 'rogue' state is huge. This threat is increasing as more countries are achieving nuclear and advanced launcher capabilities. In order to suppress or at least reduce this threat the United States created the National Missile Defense System which involved, among other systems, the development of long-range interceptors whose aim is to destroy incoming ballistic missiles in their midcourse phase. The Ballistic Missile Defense is a high-profile topic that has been the focus of political controversy lately when the U.S. decided to expand the Ballistic Missile system to Europe, with the opposition of Russia. However the technical characteristics of this system are mostly unknown by the general public. The Interception of an ICBM using a long range Interceptor Missile as intended within the Ground-Based Missile Defense System by the American National Missile Defense (NMD) implies a series of problems of incredible complexity: - The incoming missile has to be detected almost immediately after launch. - The incoming missile has to be tracked along its trajectory with a great accuracy. - The Interceptor Missile has to implement a fast and accurate guidance algorithm in order to reach the incoming missile as soon as possible. - The Kinetic Kill Vehicle deployed by the interceptor boost vehicle has to be able to detect the reentry vehicle once it has been deployed by ICBM, when it offers a very low infrared signature, in order to perform a final rendezvous manoeuvre. - The Kinetic Kill Vehicle has to be able to discriminate the reentry vehicle from the surrounding debris and decoys. - The Kinetic Kill Vehicle has to be able to implement an accurate guidance algorithm in order to perform a kinetic interception (direct collision) of the reentry vehicle, at relative speeds of more than 10 km/s. All these problems are being dealt simultaneously by the Ground-Based Missile Defense System that is developing very complex and expensive sensors, communications and control centers and long-range interceptors (Ground-Based Interceptor Missile) including a Kinetic Kill Vehicle. Among all the technical challenges involved in this interception scenario, this thesis focuses on the algorithms required for the guidance of the Interceptor Missile and the Kinetic Kill Vehicle in order to perform the direct collision with the ICBM. The involved guidance algorithms are deeply analysed in this thesis in part III where conventional guidance strategies are reviewed and optimal guidance algorithms are developed for this interception problem. The generation of a realistic simulation of the interception scenario between an ICBM and a Ground Based Interceptor designed to destroy it was considered as necessary in order to be able to compare different guidance strategies with meaningful results. As a consequence, a highly representative simulator for an ICBM and a Kill Vehicle has been implemented, as detailed in part II, and the generation of these simulators has also become one of the purposes of this thesis. In summary, the main purposes of this thesis are: - To develop a highly representative simulator of an interception scenario between an ICBM and a Kill Vehicle launched from a Ground Based Interceptor. -To analyse the main existing guidance algorithms both for the ascent phase and the terminal phase of the missiles. Novel conclusions of these analyses are obtained. - To develop original optimal guidance algorithms for the interception problem. - To compare the results obtained using the different guidance strategies, assess the behaviour of the optimal guidance algorithms, and analyse the feasibility of the Ballistic Missile Defense system in terms of guidance (part IV). As a secondary objective, a general overview of the state of the art in terms of ballistic missiles and anti-ballistic missile defence is provided (part I).
Resumo:
Incremental truncation for the creation of hybrid enzymes (ITCHY) is a novel tool for the generation of combinatorial libraries of hybrid proteins independent of DNA sequence homology. We herein report a fundamentally different methodology for creating incremental truncation libraries using nucleotide triphosphate analogs. Central to the method is the polymerase catalyzed, low frequency, random incorporation of α-phosphothioate dNTPs into the region of DNA targeted for truncation. The resulting phosphothioate internucleotide linkages are resistant to 3′→5′ exonuclease hydrolysis, rendering the target DNA resistant to degradation in a subsequent exonuclease III treatment. From an experimental perspective the protocol reported here to create incremental truncation libraries is simpler and less time consuming than previous approaches by combining the two gene fragments in a single vector and eliminating additional purification steps. As proof of principle, an incremental truncation library of fusions between the N-terminal fragment of Escherichia coli glycinamide ribonucleotide formyltransferase (PurN) and the C-terminal fragment of human glycinamide ribonucleotide formyltransferase (hGART) was prepared and successfully tested for functional hybrids in an auxotrophic E.coli host strain. Multiple active hybrid enzymes were identified, including ones fused in regions of low sequence homology.
Resumo:
Conditional gene repair mutations in the mouse can assist in cell lineage analyses and provide a valuable complement to conditional gene inactivation strategies. We present a method for the generation of conditional gene repair mutations that employs a loxP-flanked (floxed) selectable marker and transcriptional/translational stop cassette (neostop) located within the first intron of a target gene. In the absence of Cre recombinase, expression of the targeted allele is suppressed generating a null allele, while in the presence of Cre, excision of neostop restores expression to wild-type levels. To test this strategy, we have generated a conditional gene repair allele of the mouse Huntington’s disease gene homolog (Hdh). Insertion of neostop within the Hdh intron 1 generated a null allele and mice homozygous for this allele resembled nullizygous Hdh mutants and died after embryonic day 8.5. In the presence of a cre transgene expressed ubiquitously early in development, excision of neostop restored Hdh expression and rescued the early embryonic lethality. A simple modification of this strategy that permits the generation of conventional gene knockout, conditional gene knockout and conditional gene repair alleles using one targeting construct is discussed.
Resumo:
Zeolite templated carbon (ZTC) was electrochemically oxidized under various conditions, and its chemistry and structural evolution were compared to those produced by conventional chemical oxidation. In both oxidation methods, a general loss of the original structure regularity and high surface area was observed with increasing amount of oxidation. However, the electrochemical method showed much better controllability and enabled the generation of a large number of oxygen functional groups while retaining the original structure of the ZTC. Unlike chemical treatments, highly microporous carbons with an ordered 3-D structure, high surface area (ranging between 1900 and 3500 m2/g) and a large number of oxygen groups (O = 11,000–3300 μmol/g), have been prepared by the electrochemical method. Some insights into the electrooxidation mechanism of carbon materials are proposed from the obtained polarization curves, using ZTC as a model carbon material.
Resumo:
In this article, a new methodology is presented to obtain representation models for a priori relation z = u(x1, x2, . . . ,xn) (1), with a known an experimental dataset zi; x1i ; x2i ; x3i ; . . . ; xni i=1;2;...;p· In this methodology, a potential energy is initially defined over each possible model for the relationship (1), what allows the application of the Lagrangian mechanics to the derived system. The solution of the Euler–Lagrange in this system allows obtaining the optimal solution according to the minimal action principle. The defined Lagrangian, corresponds to a continuous medium, where a n-dimensional finite elements model has been applied, so it is possible to get a solution for the problem solving a compatible and determined linear symmetric equation system. The computational implementation of the methodology has resulted in an improvement in the process of get representation models obtained and published previously by the authors.
Resumo:
Nitrogen functionalization of a highly microporous activated carbon (BET surface area higher than 3000 m2/g) has been achieved using the following sequence of treatments: (i) chemical oxidation using concentrated nitric acid, (ii) amidation by acyl chloride substitution with NH4NO3 and (iii) amination by Hoffman rearrangement. This reaction pathway yielded amide and amine functional groups, and a total nitrogen content higher than 3 at.%. It is achieved producing only a small decrease (20%) of the starting microporosity, being most of it related to the initial wet oxidation of the activated carbon. Remarkably, nitrogen aromatic rings were also formed as a consequence of secondary cyclation reactions. The controlled step-by-step modification of the surface chemistry allowed to assess the influence of individual nitrogen surface groups in the electrochemical performance in 1 M H2SO4 of the carbon materials. The largest gravimetric capacitance was registered for the pristine activated carbon due to its largest apparent surface area. The nitrogen-containing activated carbons showed the highest surface capacitances. Interestingly, the amidated activated carbon showed the superior capacitance retention due to the presence of functional groups (such as lactams, imides and pyrroles) that enhance electrical conductivity through their electron-donating properties, showing a capacitance of 83 F/g at 50 A/g.
Resumo:
Funding This work was supported by the Ministry of Education , Nigeria for financial support through the TETFUND scholarship 55 scheme; CSIR [grant number 03(1264)/12/EMR-II].
Resumo:
HomeBank is introduced here. It is a public, permanent, extensible, online database of daylong audio recorded in naturalistic environments. HomeBank serves two primary purposes. First, it is a repository for raw audio and associated files: one database requires special permissions, and another redacted database allows unrestricted public access. Associated files include metadata such as participant demographics and clinical diagnostics, automated annotations, and human-generated transcriptions and annotations. Many recordings use the child-perspective LENA recorders (LENA Research Foundation, Boulder, Colorado, United States), but various recordings and metadata can be accommodated. The HomeBank database can have both vetted and unvetted recordings, with different levels of accessibility. Additionally, HomeBank is an open repository for processing and analysis tools for HomeBank or similar data sets. HomeBank is flexible for users and contributors, making primary data available to researchers, especially those in child development, linguistics, and audio engineering. HomeBank facilitates researchers' access to large-scale data and tools, linking the acoustic, auditory, and linguistic characteristics of children's environments with a variety of variables including socioeconomic status, family characteristics, language trajectories, and disorders. Automated processing applied to daylong home audio recordings is now becoming widely used in early intervention initiatives, helping parents to provide richer speech input to at-risk children.
Resumo:
In the recent years, autonomous aerial vehicles gained large popularity in a variety of applications in the field of automation. To accomplish various and challenging tasks the capability of generating trajectories has assumed a key role. As higher performances are sought, traditional, flatness-based trajectory generation schemes present their limitations. In these approaches the highly nonlinear dynamics of the quadrotor is, indeed, neglected. Therefore, strategies based on optimal control principles turn out to be beneficial, since in the trajectory generation process they allow the control unit to best exploit the actual dynamics, and enable the drone to perform quite aggressive maneuvers. This dissertation is then concerned with the development of an optimal control technique to generate trajectories for autonomous drones. The algorithm adopted to this end is a second-order iterative method working directly in continuous-time, which, under proper initialization, guarantees quadratic convergence to a locally optimal trajectory. At each iteration a quadratic approximation of the cost functional is minimized and a decreasing direction is then obtained as a linear-affine control law, after solving a differential Riccati equation. The algorithm has been implemented and its effectiveness has been tested on the vectored-thrust dynamical model of a quadrotor in a realistic simulative setup.