848 resultados para Online data processing.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article analyses the results of an empirical study on the 200 most popular UK-based websites in various sectors of e-commerce services. The study provides empirical evidence on unlawful processing of personal data. It comprises a survey on the methods used to seek and obtain consent to process personal data for direct marketing and advertisement, and a test on the frequency of unsolicited commercial emails (UCE) received by customers as a consequence of their registration and submission of personal information to a website. Part One of the article presents a conceptual and normative account of data protection, with a discussion of the ethical values on which EU data protection law is grounded and an outline of the elements that must be in place to seek and obtain valid consent to process personal data. Part Two discusses the outcomes of the empirical study, which unveils a significant departure between EU legal theory and practice in data protection. Although a wide majority of the websites in the sample (69%) has in place a system to ask separate consent for engaging in marketing activities, it is only 16.2% of them that obtain a consent which is valid under the standards set by EU law. The test with UCE shows that only one out of three websites (30.5%) respects the will of the data subject not to receive commercial communications. It also shows that, when submitting personal data in online transactions, there is a high probability (50%) of incurring in a website that will ignore the refusal of consent and will send UCE. The article concludes that there is severe lack of compliance of UK online service providers with essential requirements of data protection law. In this respect, it suggests that there is inappropriate standard of implementation, information and supervision by the UK authorities, especially in light of the clarifications provided at EU level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Big data è il termine usato per descrivere una raccolta di dati così estesa in termini di volume,velocità e varietà da richiedere tecnologie e metodi analitici specifici per l'estrazione di valori significativi. Molti sistemi sono sempre più costituiti e caratterizzati da enormi moli di dati da gestire,originati da sorgenti altamente eterogenee e con formati altamente differenziati,oltre a qualità dei dati estremamente eterogenei. Un altro requisito in questi sistemi potrebbe essere il fattore temporale: sempre più sistemi hanno bisogno di ricevere dati significativi dai Big Data il prima possibile,e sempre più spesso l’input da gestire è rappresentato da uno stream di informazioni continuo. In questo campo si inseriscono delle soluzioni specifiche per questi casi chiamati Online Stream Processing. L’obiettivo di questa tesi è di proporre un prototipo funzionante che elabori dati di Instant Coupon provenienti da diverse fonti con diversi formati e protocolli di informazioni e trasmissione e che memorizzi i dati elaborati in maniera efficiente per avere delle risposte in tempo reale. Le fonti di informazione possono essere di due tipologie: XMPP e Eddystone. Il sistema una volta ricevute le informazioni in ingresso, estrapola ed elabora codeste fino ad avere dati significativi che possono essere utilizzati da terze parti. Lo storage di questi dati è fatto su Apache Cassandra. Il problema più grosso che si è dovuto risolvere riguarda il fatto che Apache Storm non prevede il ribilanciamento delle risorse in maniera automatica, in questo caso specifico però la distribuzione dei clienti durante la giornata è molto varia e ricca di picchi. Il sistema interno di ribilanciamento sfrutta tecnologie innovative come le metriche e sulla base del throughput e della latenza esecutiva decide se aumentare/diminuire il numero di risorse o semplicemente non fare niente se le statistiche sono all’interno dei valori di soglia voluti.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This report sheds light on the fundamental questions and underlying tensions between current policy objectives, compliance strategies and global trends in online personal data processing, assessing the existing and future framework in terms of effective regulation and public policy. Based on the discussions among the members of the CEPS Digital Forum and independent research carried out by the rapporteurs, policy conclusions are derived with the aim of making EU data protection policy more fit for purpose in today’s online technological context. This report constructively engages with the EU data protection framework, but does not provide a textual analysis of the EU data protection reform proposal as such.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CMS Collaboration conducted a month-long data taking exercise, the Cosmic Run At Four Tesla, during October-November 2008, with the goal of commissioning the experiment for extended operation. With all installed detector systems participating, CMS recorded 270 million cosmic ray events with the solenoid at a magnetic field strength of 3.8 T. This paper describes the data flow from the detector through the various online and offline computing systems, as well as the workflows used for recording the data, for aligning and calibrating the detector, and for analysis of the data. © 2010 IOP Publishing Ltd and SISSA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Current scientific applications have been producing large amounts of data. The processing, handling and analysis of such data require large-scale computing infrastructures such as clusters and grids. In this area, studies aim at improving the performance of data-intensive applications by optimizing data accesses. In order to achieve this goal, distributed storage systems have been considering techniques of data replication, migration, distribution, and access parallelism. However, the main drawback of those studies is that they do not take into account application behavior to perform data access optimization. This limitation motivated this paper which applies strategies to support the online prediction of application behavior in order to optimize data access operations on distributed systems, without requiring any information on past executions. In order to accomplish such a goal, this approach organizes application behaviors as time series and, then, analyzes and classifies those series according to their properties. By knowing properties, the approach selects modeling techniques to represent series and perform predictions, which are, later on, used to optimize data access operations. This new approach was implemented and evaluated using the OptorSim simulator, sponsored by the LHC-CERN project and widely employed by the scientific community. Experiments confirm this new approach reduces application execution time in about 50 percent, specially when handling large amounts of data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographies and index.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Real-Time Kinematic (RTK) positioning is a technique used to provide precise positioning services at centimetre accuracy level in the context of Global Navigation Satellite Systems (GNSS). While a Network-based RTK (N-RTK) system involves multiple continuously operating reference stations (CORS), the simplest form of a NRTK system is a single-base RTK. In Australia there are several NRTK services operating in different states and over 1000 single-base RTK systems to support precise positioning applications for surveying, mining, agriculture, and civil construction in regional areas. Additionally, future generation GNSS constellations, including modernised GPS, Galileo, GLONASS, and Compass, with multiple frequencies have been either developed or will become fully operational in the next decade. A trend of future development of RTK systems is to make use of various isolated operating network and single-base RTK systems and multiple GNSS constellations for extended service coverage and improved performance. Several computational challenges have been identified for future NRTK services including: • Multiple GNSS constellations and multiple frequencies • Large scale, wide area NRTK services with a network of networks • Complex computation algorithms and processes • Greater part of positioning processes shifting from user end to network centre with the ability to cope with hundreds of simultaneous users’ requests (reverse RTK) There are two major requirements for NRTK data processing based on the four challenges faced by future NRTK systems, expandable computing power and scalable data sharing/transferring capability. This research explores new approaches to address these future NRTK challenges and requirements using the Grid Computing facility, in particular for large data processing burdens and complex computation algorithms. A Grid Computing based NRTK framework is proposed in this research, which is a layered framework consisting of: 1) Client layer with the form of Grid portal; 2) Service layer; 3) Execution layer. The user’s request is passed through these layers, and scheduled to different Grid nodes in the network infrastructure. A proof-of-concept demonstration for the proposed framework is performed in a five-node Grid environment at QUT and also Grid Australia. The Networked Transport of RTCM via Internet Protocol (Ntrip) open source software is adopted to download real-time RTCM data from multiple reference stations through the Internet, followed by job scheduling and simplified RTK computing. The system performance has been analysed and the results have preliminarily demonstrated the concepts and functionality of the new NRTK framework based on Grid Computing, whilst some aspects of the performance of the system are yet to be improved in future work.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(PDF contains 57 pages)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on the data processing technologies of interferential spectrometer, a sort of real-time data processing system on chip of interferential imaging spectrometer was studied based on large capacitance and high speed field programmable gate array( FPGA) device. The system integrates both interferograrn sampling and spectrum rebuilding on a single chip of FPGA and makes them being accomplished in real-time with advantages such as small cubage, fast speed and high reliability. It establishes a good technical foundation in the applications of imaging spectrometer on target detection and recognition in real-time.