953 resultados para One-dimensional society


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The self-assembling behavior and microscopic structure of zinc oxide nanoparticle Langmuir-Blodgett monolayer films were investigated for the case of zinc oxide nanoparticles coated with a hydrophobic layer of dodecanethiol. Evolution of nanoparticle film structure as a function of surface pressure (π) at the air-water interface was monitored in situ using Brewster’s angle microscopy, where it was determined that π=16 mN/m produced near-defect-free monolayer films. Transmission electron micrographs of drop-cast and Langmuir-Schaefer deposited films of the dodecanethiol-coated zinc oxide nanoparticles revealed that the nanoparticle preparation method yielded a microscopic structure that consisted of one-dimensional rodlike assemblies of nanoparticles with typical dimensions of 25 x 400 nm, encased in the organic dodecanethiol layer. These nanoparticle-containing rodlike micelles were aligned into ordered arrangements of parallel rods using the Langmuir-Blodgett technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Following an invariant-imbedding approach, we obtain analytical expressions for the ensemble-averaged resistance (ρ) and its Sinai’s fluctuations for a one-dimensional disordered conductor in the presence of a finite electric field F. The mean resistance shows a crossover from the exponential to the power-law length dependence with increasing field strength in agreement with known numerical results. More importantly, unlike the zero-field case the resistance distribution saturates to a Poissonian-limiting form proportional to A‖F‖exp(-A‖F‖ρ) for large sample lengths, where A is constant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A novel method is proposed to treat the problem of the random resistance of a strictly one-dimensional conductor with static disorder. For the probability distribution of the transfer matrix R of the conductor we propose a distribution of maximum information entropy, constrained by the following physical requirements: (1) flux conservation, (2) time-reversal invariance, and (3) scaling with the length of the conductor of the two lowest cumulants of ω, where R=exp(iω→⋅Jbhat). The preliminary results discussed in the text are in qualitative agreement with those obtained by sophisticated microscopic theories.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the recent interest in compounds containing M-SH units, an organotin hydrosulfide compound, Me2Sn(SH)(O2CMe) (1) was prepared by controlled hydrolysis of the diorganotin thioacetate. Under similar mild hydrolytic conditions the corresponding benzoate could not be isolated. Instead, the thiobenzoate complex, Me2Sn(SOCPh)(2) (3) was obtained in excellent yields indicating that there was no hydrolysis. Both 1 and 3 were characterized by X-ray crystallography. Some properties of the polymeric compound 1, such as spectral, electrical conductivity and NLO response were also studied. The reactivity and properties were explained using density functional calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report our findings on the quantum phase transitions in cold bosonic atoms in a one-dimensional optical lattice using the finite-size density-matrix renormalization-group method in the framework of the extended Bose-Hubbard model. We consider wide ranges of values for the filling factors and the nearest-neighbor interactions. At commensurate fillings, we obtain two different types of charge-density wave phases and a Mott insulator phase. However, departure from commensurate fillings yields the exotic supersolid phase where both the crystalline and the superfluid orders coexist. In addition, we obtain the signatures for the solitary waves and the superfluid phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adiabatic quantum computation is based on the adiabatic evolution of quantum systems. We analyze a particular class of quantum adiabatic evolutions where either the initial or final Hamiltonian is a one-dimensional projector Hamiltonian on the corresponding ground state. The minimum-energy gap, which governs the time required for a successful evolution, is shown to be proportional to the overlap of the ground states of the initial and final Hamiltonians. We show that such evolutions exhibit a rapid crossover as the ground state changes abruptly near the transition point where the energy gap is minimum. Furthermore, a faster evolution can be obtained by performing a partial adiabatic evolution within a narrow interval around the transition point. These results generalize and quantify earlier works.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The study of steady-state flows in radiation-gas-dynamics, when radiation pressure is negligible in comparison with gas pressure, can be reduced to the study of a single first-order ordinary differential equation in particle velocity and radiation pressure. The class of steady flows, determined by the fact that the velocities in two uniform states are real, i.e. the Rankine-Hugoniot points are real, has been discussed in detail in a previous paper by one of us, when the Mach number M of the flow in one of the uniform states (at x=+∞) is greater than one and the flow direction is in the negative direction of the x-axis. In this paper we have discussed the case when M is less than or equal to one and the flow direction is still in the negative direction of the x-axis. We have drawn the various phase planes and the integral curves in each phase plane give various steady flows. We have also discussed the appearance of discontinuities in these flows.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Molecular dynamics investigation of benzene in one-dimensional channel systems A1PO(4)-5, VPI-5, and carbon nanotube is reported. The results suggest that, in all the three host systems, the plane of benzene is almost perpendicular to the channel axis when the molecule is near the center of the channel and the plane of benzene is parallel to the channel axis when the molecule is near the wall of the channel. The density distribution of benzene as a function of channel length, z and the radial distance, r, from the channel axis is also different in the three host structures. Anisotropy in translational diffusion coefficient, calculated in body-fixed frame of benzene, suggests that benzene prefers to move with its plane parallel to the direction of motion in A1PO(4)-5 and VPI-5 whereas in carbon nanotube the motion occurs predominantly with the plane of the benzene perpendicular to the direction of motion.;Anisotropy associated with the rotational motion is seen to alter significantly in confinement as compared to liquid benzene. In A1PO(4)-5, the rotational anisotropy is reversed as compared to liquid benzene thereby suggesting that anisotropy arising out of molecular geometry can be reduced. Reorientational correlation times for C-6 and C-2 axes Of benzene are reported. Apart from the inertial decay of reorientational correlation function due to free, rotation, two other distinct regimes of decay are observed in narrower channels (AIPO(4)-5 and carbon nanotube): (i) an initial fast decay (0.5-2 ps) and (ii) a slower decay (>2 ps) of reorientational correlation function where C-6 decays slower than C-2 Similar to what is observed in liquid benzene. In the initial fast decay, it is seen that the decay for C-6 is faster than C-2 which is in contrast to what is observed in liquid benzene or for benzene confined in VPI-5.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the exact solution to a one-dimensional multicomponent quantum lattice model interacting by an exchange operator which falls off as the inverse sinh square of the distance. This interaction contains a variable range as a parameter and can thus interpolate between the known solutions for the nearest-neighbor chain and the inverse-square chain. The energy, susceptibility, charge stiffness, and the dispersion relations for low-lying excitations are explicitly calculated for the absolute ground state, as a function of both the range of the interaction and the number of species of fermions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the effects of weak nonlinearity and weak dissipation on a linear wave in relativistic gasdynamics. Using perturbation and asymptotic expansions, a relativistic analogue of generalised one-dimensional Burgers' equation of classical gasdynamics is derived to describe far-field description of the wave. Steady state solution is presented for strict one-dimensional case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a one-dimensional mesoscopic Hubbard ring with and without disorder and compute charge and spin stiffness as a measure of the permanent currents. For finite disorder we identify critical disorder strength beyond which the charge currents in a system with repulsive interactions are larger than those for a free system. The spin currents in the disordered repulsive Hubbard model are enhanced only for small U, where the magnetic state of the system corresponds to a charge-density wave pinned to the impurities. For large U, the state of the system corresponds to localized isolated spins and the spin currents are found to be suppressed. For the attractive Hubbard model we find that the charge currents are always suppressed compared to the free system at all length scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a one-dimensional Hubbard model in the presence of disorder. We compute the charge stiffness for a mesoscopic ring as a function of the size L, which is a measure of the persistent currents. We find that for finite disorder the persistent currents of the system with repulsive interactions are larger than those of the system with attractive interactions. This counterintuitive result is due to the fact that local-density fluctuations are reduced in the presence of repulsive interactions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Structural and dynamical properties of ethane in one-dimensional channels of AlPO4-5 and carbon nanotube have been investigated at dilute concentration with the help of molecular dynamics simulation. Density distributions and orientational structure of ethane have been analyzed. Repulsive interactions seem to play an important role when ethane is located in the narrow part of the AlPO4-5 channel. In AlPO4-5, parallel orientation is predominant over perpendicular orientation except when ethane is located in the broader part of the channel. Unlike in the case of single-file diffusion, our results in carbon nanotube show that at dilute concentrations the mean squared displacement, mu(2)(t) approximate to t(alpha), alpha = 1.8. The autocorrelation function for the z-component of angular velocity of ethane in space-fixed frame of reference shows a pronounced negative correlation. This is attributed to the restriction in the movement of ethane along the x- and y- directions. It is seen that the ratio of reorientational correlation times does not follow the Debye model for confined ethane but it is closer to the predictions of the Debye model for bulk ethane.