944 resultados para Oncogenic Mutations


Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVE: Ovarian cancer is the leading cause of death from gynecologic malignancies in the Western world. Fibroblast growth factor receptor (FGFR) signaling has been implicated to play a role in ovarian tumorigenesis. Mutational activation of one member of this receptor family, FGFR2, is a frequent event in endometrioid endometrial cancer. Given the similarities in the histologic and molecular genetics of ovarian and endometrial cancers, we hypothesized that activating FGFR2 mutations may occur in a subset of endometrioid ovarian tumors, and possibly other histotypes. METHODS: Six FGFR2 exons were sequenced in 120 primary ovarian tumors representing the major histologic subtypes. RESULTS: FGFR2 mutation was detected at low frequency in endometrioid (1/46, 2.2%) and serous (1/41, 2.4%) ovarian cancer. No mutations were detected in clear cell, mucinous, or mixed histology tumors or in the ovarian cancer cell lines tested. Functional characterization of the FGFR2 mutations confirmed that the mutations detected in ovarian cancer result in receptor activation. CONCLUSIONS: Despite the low incidence of FGFR2 mutations in ovarian cancer, the two FGFR2 mutations identified in ovarian tumors (S252W, Y376C) overlap with the oncogenic mutations previously identified in endometrial tumors, suggesting activated FGFR2 may contribute to ovarian cancer pathogenesis in a small subset of ovarian tumors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Oncogenic mutations in Kras occur in 40% to 45% of patients with advanced colorectal cancer (CRC). We have previously shown that chemotherapy acutely activates ADAM17, resulting in growth factor shedding, growth factor receptor activation, and drug resistance in CRC tumors. In this study, we examined the role of mutant Kras in regulating growth factor shedding and ADAM17 activity, using isogenic Kras mutant (MT) and wild-type (WT) HCT116 CRC cells. Significantly higher levels of TGF-a and VEGF were shed from KrasMT HCT116 cells, both basally and following chemotherapy treatment, and this correlated with increased pErk (phosphorylated extracellular signal regulated kinase)1/2 levels and ADAM17 activity. Inhibition of Kras, MEK (MAP/ERK kinase)1/2, or Erk1/2 inhibition abrogated chemotherapy-induced ADAM17 activity and TGF-a shedding. Moreover, we found that these effects were not drug or cell line specific. In addition, MEK1/2 inhibition in KrasMT xenografts resulted in significant decreases in ADAM17 activity and growth factor shedding in vivo, which correlated with dramatically attenuated tumor growth. Furthermore, we found that MEK1/2 inhibition significantly induced apoptosis both alone and when combined with chemotherapy in KrasMT cells. Importantly, we found that sensitivity to MEK1/2 inhibition was ADAM17 dependent in vitro and in vivo. Collectively, our findings indicate that oncogenic Kras regulates ADAM17 activity and thereby growth factor ligand shedding in a MEK1/2/Erk1/2-dependent manner and that KrasMT CRC tumors are vulnerable to MEK1/2 inhibitors, at least in part, due to their dependency on ADAM17 activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cutaneous T-cell lymphomas (CTCLs) are malignancies of skin-homing lymphoid cells, which have so far not been investigated thoroughly for common oncogenic mutations. We screened 90 biopsy specimens from CTCL patients (41 mycosis fungoides, 36 Sézary syndrome, and 13 non-mycosis fungoides/Sézary syndrome CTCL) for somatic mutations using OncoMap technology. We detected oncogenic mutations for the RAS pathway in 4 of 90 samples. One mycosis fungoides and one pleomorphic CTCL harbored a KRAS(G13D) mutation; one Sézary syndrome and one CD30(+) CTCL harbored a NRAS(Q61K) amino acid change. All mutations were found in stage IV patients (4 of 42) who showed significantly decreased overall survival compared with stage IV patients without mutations (P = .04). In addition, we detected a NRAS(Q61K) mutation in the CTCL cell line Hut78. Knockdown of NRAS by siRNA induced apoptosis in mutant Hut78 cells but not in CTCL cell lines lacking RAS mutations. The NRAS(Q61K) mutation sensitized Hut78 cells toward growth inhibition by the MEK inhibitors U0126, AZD6244, and PD0325901. Furthermore, we found that MEK inhibitors exclusively induce apoptosis in Hut78 cells. Taken together, we conclude that RAS mutations are rare events at a late stage of CTCL, and our preclinical results suggest that such late-stage patients profit from MEK inhibitors.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The assumption that genes encoding tyrosine kinase receptors could play a role in human cancers has been confirmed by the identification of oncogenic mutations in the kinase domain of RET and KIT. Recently, homologous residues were found mutated in MET, in papillary renal carcinomas (PRCs). The link coupling these genetic lesions to cellular transformation is still unclear. METPRC mutations result in increased kinase activity and—in some instances, i.e., M1250T substitution—in changes in substrate specificity. A direct correlation occurs between the transforming potential of METPRC mutants and their ability to constitutively associate with signal transducers through two phosphorylated tyrosines (Y1349VHVNATY1356VNV) located in the receptor tail. Substitution of these “docking tyrosines” with phenylalanines leaves unaffected the altered properties of the kinase but abrogates transformation and invasiveness in vitro. Uncoupling the receptor from signal transducers with a tyrosine-phosphorylated peptide derivative (YpVNV) inhibits invasive growth induced by METPRC mutants. These data indicate that constitutive receptor coupling to downstream signal transducers is a key mechanism in neoplastic transformation driven by mutated MET and suggest a therapeutic strategy to target neoplastic diseases associated with this oncogene.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aberrant regulation of the Wnt signalling pathway is a recurrent theme in cancer biology. Hyper activation due to oncogenic mutations and paracrine activity has been found in both colon cancer and breast cancer, and continues to evolve as a central mechanism in oncogenesis. PDLIM2, a cytoskeletal PDZ protein, is an IGF-1 regulated gene that is highly expressed in cancer cell lines derived from metastatic tumours. Suppression of PDLIM2 inhibits polarized cell migration, reverses the Epithelial to Mesenchymal transition (EMT) phenotype, suppresses the transcription of β-catenin target genes, and regulates gene expression of key transcription factors in EMT. This thesis investigates the mechanism by which PDLIM2 contributes to the maintenance of Wnt signalling in cancer cells. Here we show that PDLIM2 is a critical regulator of the Wnt pathway by regulating β-catenin at the adherens juctions, as also its transcriptional activity by the interaction of PDLIM2 with TCF4 at the nucleus. Evaluation of PDLIM2 in macrophages and co-culture studies with cancer cells and fibroblasts showed the influence exerted on PDLIM2 by paracrine cues. Thus, PDLIM2 integrates cytoskeleton signalling with gene expression by modulating the Wnt signalling pathway and reconciling microenvironmental cues with signals in epithelial cells. Negative correlation of mRNA and protein levels in the triple negative breast cancer cell BT549 suggests that PDLIM2 is part of a more complex mechanism that involves transcription and posttranslational modifications. GST pulldown studies and subsequent mass spectrometry analysis showed that PDLIM2 interacts with 300 proteins, with a high biological function in protein biosynthesis and Ubiquitin/proteasome pathways, including 13 E3 ligases. Overall, these data suggest that PDLIM2 has two distinct functions depending of its location. Located at the cytoplasm mediates cytoskeletal re-arrangements, whereas at the nucleus PDLIM2 acts as a signal transduction adaptor protein mediating transcription and ubiquitination of key transcription factors in cancer development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Similar to seemingly maladaptive genes in general, the persistence of inherited cancer-causing mutant alleles in populations remains a challenging question for evolutionary biologists. In addition to traditional explanations such as senescence or antagonistic pleiotropy, here we put forward a new hypothesis to explain the retention of oncogenic mutations. We propose that although natural defenses evolve to prevent neoplasm formation and progression thus increasing organismal fitness, they also conceal the effects of cancer-causing mutant alleles on fitness and concomitantly protect inherited ones from purging by purifying selection. We also argue for the importance of the ecological contexts experienced by individuals and/or species. These contexts determine the locally predominant fitness-reducing risks, and hence can aid the prediction of how natural selection will influence cancer outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose Cancer cells have been shown to be more susceptible to Ran knockdown than normal cells. We now investigate whether Ran is a potential therapeutic target of cancers with frequently found mutations that lead to higher Ras/MEK/ERK [mitogen-activated protein/extracellular signal-regulated kinase (ERK; MEK)] and phosphoinositide 3-kinase (PI3K)/Akt/mTORC1 activities. Experimental Design Apoptosis was measured by flow cytometry [propidium iodide (PI) and Annexin V staining] and MTT assay in cancer cells grown under different conditions after knockdown of Ran. The correlations between Ran expression and patient survival were examined in breast and lung cancers. Results Cancer cells with their PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways inhibited are less susceptible to Ran silencing-induced apoptosis. K-Ras-mutated, c-Met-amplified, and Pten-deleted cancer cells are also more susceptible to Ran silencing-induced apoptosis than their wild-type counterparts and this effect is reduced by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Overexpression of Ran in clinical specimens is significantly associated with poor patient outcome in both breast and lung cancers. This association is dramatically enhanced in cancers with increased c-Met or osteopontin expression, or with oncogenic mutations of K-Ras or PIK3CA, all of which are mutations that potentially correlate with activation of the PI3K/Akt/mTORC1 and/or Ras/MEK/ERK pathways. Silencing Ran also results in dysregulation of nucleocytoplasmic transport of transcription factors and downregulation of Mcl-1 expression, at the transcriptional level, which are reversed by inhibitors of the PI3K/Akt/mTORC1 and MEK/ERK pathways. Conclusion Ran is a potential therapeutic target for treatment of cancers with mutations/changes of expression in protooncogenes that lead to activation of the PI3K/Akt/mTORC1 and Ras/MEK/ERK pathways. ©2011 AACR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

BRAF is a major oncoprotein and oncogenic mutations in BRAF are found in a significant number of cancers, including melanoma, thyroid cancer, colorectal cancer and others. Consequently, BRAF inhibitors have been developed as treatment options for cancers with BRAF mutations which have shown some success in improving patient outcomes in clinical trials. Development of resistance to BRAF kinase inhibitors is common, however, and overcoming this resistance is an area of significant concern for clinicians, patients and researchers alike. In this review, we identify the mechanisms of BRAF kinase inhibitor resistance and discuss the implications for strategies to overcome this resistance in the context of new approaches such as multi-kinase targeted therapies and emerging RNA interference based technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oncogenic mutations in BRAF are common in melanoma and drive constitutive activation of the MEK/ERK pathway. To elucidate the transcriptional events downstream of V600EBRAF/MEK signalling we performed gene expression profiling of A375 melanoma cells treated with potent and selective inhibitors of V600EBRAF and MEK (PLX4720 and PD184352 respectively). Using a stringent Bayesian approach, we identified 69 transcripts that appear to be direct transcriptional targets of this pathway and whose expression changed after 6 h of pathway inhibition. We also identified several additional genes whose expression changed after 24 h of pathway inhibition and which are likely to be indirect transcriptional targets of the pathway. Several of these were confirmed by demonstrating their expression to be similarly regulated when BRAF was depleted using RNA interference, and by using qRT-PCR in other BRAF mutated melanoma lines. Many of these genes are transcription factors and feedback inhibitors of the ERK pathway and are also regulated by MEK signalling in NRAS mutant cells. This study provides a basis for understanding the molecular processes that are regulated by V600EBRAF/MEK signalling in melanoma cells.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The small GTPases HRAS, NRAS and KRAS are mutated in approximately one-third of all human cancers, rendering the proteins constitutively active and oncogenic. Lung cancer is the leading cause of cancer deaths worldwide, and more than 20% of human lung cancers harbor mutations in RAS, with 98% of those occurring in the KRAS isoform. While there have been many advances in the understanding of KRAS–driven lung tumorigenesis, it remains a therapeutic challenge. To further this understanding and assess novel approaches for treatment, I have investigated two aspects of Kras–driven tumorigenesis in the lung:

(I) Despite nearly identical protein sequences, the three RAS proto-oncogenes exhibit divergent codon usage. Of the three isoforms, KRAS contains the most rare codons resulting in lower levels of KRAS protein expression relative to HRAS and NRAS. To determine the consequences of rare codon bias during de novo tumorigenesis, we created a knock-in Krasex3op mouse in which synonymous mutations in exon 3 converted codons from rare to common. These mice had reduced tumor burden and fewer oncogenic mutations in the Krasex3op allele following carcinogen exposure. The reduction in tumorigenesis appeared to be a product of rare codons affecting both the oncogenic and non–oncogenic alleles. Converting rare codons to common codons yielded a more potent oncogenic allele that promoted growth arrest and enhanced tumor suppression by the non-oncogenic allele. Thus, rare codons play an integral role in Kras tumorigenesis.

(II) Lung cancer patients exhale higher levels of NO and iNOS-/- mice are resistant to chemically induced lung tumorigenesis. I hypothesize that NO promotes Kras–driven lung adenocarcinoma, and NOS inhibition may decrease Kras–driven lung tumorigenesis. To test this hypothesis, I assessed efficacy of the NOS inhibitor L–NAME in a genetically engineered mouse model of Kras-driven lung adenocarcinoma. Adenoviral Cre recombinase was delivered into the lungs intranasally, resulting in expression of oncogenic KrasG12D and dominant-negative Trp53R172H in lung epithelial cells. L–NAME treatment was provided in the water and continued until survival endpoints. In this model, L–NAME treatment decreased tumor growth and prolonged survival. These data establish a potential clinical role for NOS inhibition in lung cancer treatment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor Vemurafenib (PLX4032) has shown significant increases in response rates and overall survival, only minor responses to Vemurafenib treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumours has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MEK inhibition in BRAFMT CRC. Methods: Paired BRAFMT/WT RKO and VACO432 CRC cells and non-isogenic BRAFMT LIM2405, WiDR, HT-29 and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interactions between MEK1/2 and JAK1/2 or c-MET inhibition were assessed using the MTT cell viability assays and Flow Cytometry. Apoptosis was measured using Western Blotting for PARP, cleaved caspase 3, 8 and 9, and caspase 3/7 and 8 activity assays. Results: Treatment with MEK1/2 inhibitors AZD6244, trametinib, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in synergy and significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or trametinib in BRAFMT CRC cells. The RTK c-MET is activated upstream of STAT3 following MEK1/2 inhibition. Inhibition of c-MET and MEK1/2, using pharmacological inhibitors (crizotinib and AZD6244), results in synergy and increased cell death in BRAFMT CRC cells. Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition in vitro. Combinations of JAK/MEKi or MET/MEKi can be a potential novel treatment strategy for poor prognostic BRAFMT advanced CRC patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: Oncogenic mutations in BRAF occur in 8% of patients with advanced colorectal cancer (CRC) and have been shown to correlate with poor prognosis. In contrast to BRAF mutant (MT) melanoma, where the BRAF inhibitor PLX4032 has shown significant increases in response rates and overall survival compared to standard Dacarbazine treatment, only minor responses to PLX4032 treatment have been reported in BRAFMT CRC. Clear understanding of the vulnerabilities of BRAFMT CRC is important, and identification of druggable targets uniquely required by BRAFMT CRC tumors has the potential to fill a gap in the therapeutic armamentarium of advanced CRC. The aim of this study was to identify novel resistance mechanisms to MAPK inhibition in BRAFMT CRC.

Methods: Paired BRAFMT/WT RKO and VACO432 CRC cell line models and non-isogenic BRAFMT LIM2405, WiDR and COLO205 CRC cells were used. Changes in protein expression/activity were assessed by Western Blotting. Interaction between MEK1/2 and JAK1/2 inhibition was assessed using the MTT cell viability assays and flow cytometry. Apoptosis was measured using Western blotting for PARP, cleaved caspase 3/8 and caspase 8, 3/7 activity assays.

Results: Treatment with MEK1/2 inhibitors AZD6244, GSK1120212, UO126 and PD98059 resulted in acute increases in STAT3 activity in the BRAFMT RKO and VACO432 cells but not in their BRAFWT clones and this was associated with increases in JAK2 activity. Inhibition of JAK/STAT3 activation using gene specific siRNA or small molecule inhibitors TG101348 or AZD1480, abrogated this survival response and resulted in significant increases in cell death when combined with MEK1/2 inhibitors AZD6244 or GSK1120212 in BRAFMT CRC cells. In addition, combination of MEK1/2 and JAK/STAT3 inhibition resulted in strong synergy with CI values between 0.3 and 0.7 in BRAFMT CRC cells.

Conclusions: We have identified JAK/STAT3 activation as an important escape mechanism for BRAFMT CRC following MEK1/2 inhibition. These data provide a strong rationale for further investigation of combination of MEK1/2 and JAK/STAT3 inhibition in BRAFMT in vivo models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La voie de signalisation Notch est conservée au cours de l'évolution. Elle joue un rôle clé dans le développement, et elle est impliquée dans de nombreuses décisions de destin cellulaire, dans le maintien des cellules souches, et dans le contrôle de la prolifération et de la différenciation cellulaires. Une dérégulation de la signalisation Notch est impliquée dans diverses maladies et cancers, y compris les tumeurs solides, comme les cancers du sein et du col de l'utérus, et les leucémies, comme la Leucémie Aiguë Lymphoblastique des cellules T (LAL-T). Notch est un récepteur transmembranaire activé par des ligands transmembranaires de la famille DSL (Delta/Serrate/Lag-2). Bien que plusieurs mutations oncogéniques ont été identifiées au niveau du récepteur Notch, de nombreux cancers modulés par Notch demeurent ligand-dépendants. Étonnamment, les mécanismes moléculaires régulant l'activation du ligand sont encore relativement peu caractérisés par rapport à ceux qui régissent le récepteur Notch lui-même. Utilisant un essai de co-culture avec un rapporteur luciférase de Notch, nous avons effectué le premier crible d'ARNi pan-génomique visant spécifiquement à identifier des régulateurs des ligands de Notch dans la cellule émettrice du signal. Nous avons ainsi pu découvrir de nouvelles classes de régulateurs communs pour les ligands Delta-like1 et 4. Ces régulateurs comprennent des inhibiteurs de protéases, des facteurs de transcription, et des gènes divers à fonction inconnue, tels que Tmem128 « Transmembrane protein 128 », ou à fonction préalablement caractérisée tels que la co-chaperonne moléculaire Cdc37 « Cell division cycle 37 homolog ». Par la suite, nous avons développé des cribles secondaires fonctionnels où nous avons démontré l'importance de ces régulateurs pour des événements Notch-dépendants, comme la différenciation des cellules T normales, et la survie des cellules souches pré-leucémiques isolées à partir d'un modèle murin de LAL-T. En outre, nous avons prouvé que les régulateurs les plus forts du crible de survie sont également nécessaires pour l'activité d'auto-renouvellement des cellules souches pré-leucémiques. Finalement, nous avons entamé une caractérisation moléculaire préliminaire de deux régulateurs nouvellement identifiés; Tmem128 et Cdc37 afin d'étudier leur mécanisme d'action sur les ligands. En conclusion, cette étude nous a permis d'identifier de nouveaux régulateurs de la voie Notch qui pourraient servir de cibles thérapeutiques potentielles dans les cancers; tel qu'illustré par le modèle LAL-T. La compréhension des détails moléculaires sous-jacents aux fonctions de ces régulateurs sera essentielle afin de développer des inhibiteurs pharmacologiques pour bloquer leur action et entraver la signalisation Notch dans le cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Brain tumors comprise a wide variety of neoplasia classified according to their cellular origin and their morphological and histological characteristics. The transformed phenotype of brain tumor cells has been extensively studied in the past years, achieving a significant progress in our understanding of the molecular pathways leading to tumorigenesis. It has been reported that the phosphoinositide 3-kinase (PI3K)/AKT signaling pathway is frequently altered in grade IV brain tumors resulting in uncontrolled cell growth, survival, proliferation, angiogenesis, and migration. This aberrant activation can be explained by oncogenic mutations in key components of the pathway or through abnormalities in its regulation. These alterations include overexpression and mutations of receptor tyrosine kinases (RTKs), mutations and deletions of the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene, encoding a lipid kinase that directly antagonized PI3K activity, and alterations in Ras signaling. Due to promising results of preclinical studies investigating the PI3K/AKT pathway in grade IV brain tumors like glioblastoma and medulloblastoma, the components of this pathway have emerged as promising therapeutic targets to treat these malignant brain tumors. Although an arsenal of small molecule inhibitors that target specific components of this signaling pathway is being developed, its successful application in the clinics remains a challenge. In this article we will review the molecular basis of the PI3K/AKT signaling pathway in malignant brain tumors, mainly focusing on glioblastoma and medulloblastoma, and we will further discuss the current status and potential of molecular targeted therapies.