909 resultados para Omission of micronutrients
Resumo:
Many studies have reported increasing levels of obesity and overweight in children. Recent policy developments have examined a range of influences on children's eating habits but have left largely unexamined the role of parents in general and mothers in particular. In this study we examined mothers’ understandings of healthy eating and of their influence on their children's eating patterns. Semi-structured interviews were conducted with nine mothers of children aged between 4 and 12 years of age. Interviewees displayed knowledge of recommended eating practices for their children but distinguished this knowledge from actual eating practices. Avoidance of negative social perceptions, pleasure in eating and opportunities for fast food were regarded as more important than eating in accordance with recommended nutritional guidelines. Moreover, the food choices made were viewed as positive alternatives to eating based on nutritional balance. These views pose a challenge for policy initiatives to address obesity and excess weight in children. Future initiatives should have increased regard for the everyday contexts within which children's eating patterns are understood and justified.
Resumo:
This article corrects: Brief Report: High-Throughput Sequencing of IL23R Reveals a Low-Frequency, Nonsynonymous Single-Nucleotide Polymorphism That Is Associated With Ankylosing Spondylitis in a Han Chinese Population Vol. 65, Issue 7, 1747–1752, Article first published online: 2 JUL 2013
Resumo:
Micronutrients play a very important role in biological processes for wastewater treatment. Many industrial wastewaters lack in nutrients (macronutrients and micronutrients) required for microbial growth, and this is one of the main problems at many activated sludge plants treating industrial wastewater. The microbial community structure is one of the important factors controlling the pollutant-degrading capacity of biological wastewater treatment system. In this study, the concentrations of micronutrients of the textile wastewater discharged from a textile plant were determined, and the effects of micronutrients on treatment efficiency and microorganism community structure of the biological treatment system were studied. The results showed that the optimal concentrations of magnesium, molybdenum, zinc, thiamine and niacin in the textile wastewater were 5.0, 2.0, 1.0, 1.0 and 1.0mg/L, respectively. The COD removal rates when magnesium, molybdenum, zinc, thiamine and niacin were added individually to the wastewater in their optimal concentrations were 1.8, 1.4, 1.3, 1.6 and 2.2 times of that of the control, respectively. The improving effects of combinations of zinc and thiamine, zinc and niacin, thiamine and niacin were better than single micronutrient. The diversity of quinones (DQ) changed significantly after the micronutrient was added into the wastewater treatment system. This indicated that there was probably a feasibility of optimizing the biological treatment performances and microorganism community structure of textile wastewater treatment system through micronutrient supplement.
Resumo:
Heart failure is a common condition in the Western world, particularly among elderly persons and with an ever-aging population, the incidence is expected to increase. Diet in the setting of heart failure is important--patients with this condition are advised to consume a low-salt diet and monitor their weight closely. Nutritional status of patients with heart failure also is important--those with poor nutritional status tend to have a poor long-term prognosis. A growing body of evidence suggests an association between heart failure and micronutrient status. Reversible heart failure has been described as a consequence of severe thiamine and selenium deficiency. However, contemporary studies suggest that a more subtle relationship may exist between micronutrients and heart failure. This article reviews the existing literature linking heart failure and micronutrients, examining studies that investigated micronutrient intake, micronutrient status, and the effect of micronutrient supplementation in patients with heart failure, and focusing particularly on vitamin A, vitamin C, vitamin E, thiamine, other B vitamins, vitamin D, selenium, zinc, and copper.
Resumo:
The reinforcement omission effects have been traditionally interpreted in terms of: behavioral facilitation after reinforcement omission induced by primary frustration or behavioral suppression after reinforcement delivery induced by postconsummatory states. The studies reviewed here indicate that amygdala is involved in modulation of these effects. However, the fact that amygdala lesions, extensive or selective, can eliminate, reduce and enhance the omission effects makes it difficult to understand how it is the exact nature of their involvement. The amygdala is related to several functions that depend on its connections with other brain systems. Thus, it is necessary to consider the involvement of a more complex neural network in the modulation of the reinforcement omission effects. The connection of amygdala subareas to cortical and subcortical structures may be involved in this modulation since they also are linked to processes related to reward and expectancy.
Resumo:
The objective of this work was to investigate the adsorption of micronutrients in humin and to verify the ability to release these elements in water. The first step was to determine the adsorption capacity of humin for several essential plant micronutrients and check the kinetic parameters. The order of adsorption was Zn < Ni < Co < Mn < Mo < Cu < Fe, whereas Zn showed maximum values of ca. 2.5 mg g-1 and Fe values of ca. 0.5 mg g-1 for systems containing 1 g of humin. Iron presented higher percentages of release (ca. 100%) and Co the lowest percentages (0.14%). The findings suggested that the use of humin enriched with micronutrients can be a promising alternative for the fertilization of agricultural soils, with the additional benefit of incorporating organic matter present in the form of humic substances into the soil and improving the agricultural productivity. © 2013 Sociedade Brasileira de Química.
Resumo:
Knowledge of plant nutritional status allows an understanding of the physiological responses of plants to crop fertilization. A hydroponic experiment evaluated the symptoms of macronutrient deficiency in cauliflower 'Verona'and determined: a) the macronutrient contents of foliar tissues when visual symptoms were observed, b) macronutrients content of foliar and inflorescence tissues at harvest. The effect of nutrient deficiency on inflorescence mass was also evaluated. Nitrogen deficiency caused chlorosis followed by purple color in the old leaves, while P deficiency caused only chlorosis in old leaves. Chlorosis at the edge of old leaves progressing to the center of the leaves was observed with the omission of K, and after was observed necrosis in the chlorotic areas. Ca deficiency caused tip burn in new leaves, while Mg deficiency caused internerval chlorosis in old leaves. The omission of eachmacronutrient reduced inflorescence dry matter. This deleterious effect was larger for N, P, and K deficiencies, reducing inflorescence dry matter by 87, 49, and 42%, respectively. When the nutrient solutions without N, P, K, Ca, or Mg were supplied to cauliflower plants, the macronutrient contents at harvest were 8.8, 0.6, 3.5, 13.0, and 0.8 g kg(-1) in the foliar tissues and 27.3, 2.2, 21.6, 1.1, and 0.7 g kg(-1) in the inflorescence tissues, respectively.
Resumo:
Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 mu mol L-1), Cu (0.05, 0.25 and 0.50 mu mol L-1), Mn (0.2, 1.0 and 2.0 mu mol L-1) and Zn (0.2, 1.0 and 2.0 mu mol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.
Resumo:
Castor bean is a nutrient-demanding species, but there is still little information on its micronutrient requirements. The objectives of this study were to evaluate the effects of levels of B (2.5, 12.5 and 25.0 µmol L-1), Cu (0.05, 0.25 and 0.50 µmol L-1), Mn (0.2, 1.0 and 2.0 µmol L-1) and Zn (0.2, 1.0 and 2.0 µmol L-1) in a nutrient solution on plant B, Cu, Mn and Zn concentrations and uptake, vegetative growth and fruit yield of castor bean "Iris", grown in greenhouse. The experiment was arranged in a completely randomized block design with three replicates. The first deficiency symptoms were observed for B, followed by Zn, Cu and Mn. The main changes in the cell ultrastructure due to lack of B were thickening of the cell walls and middle lamellae, distorted chloroplasts and tightly stacked thylakoids, besides the absence of starch grains. The Mn, Zn and Cu deficiencies led to disruption of chloroplasts, disintegration of thylakoids and absence of amyloplasts. The concentration and uptake of B, Cu, Mn, and Zn in castor bean plants increased with micronutrient supply in the solution. Fruit yield was drastically reduced by B and Mn deficiencies. On the other hand, the dry matter yield of the shoot and root of castor bean plants was not. In the treatment with full nutrient solution, the leaves accumulated 56 and 48 % of the total B and Mn taken up by the plants, respectively, and the seeds and roots 85 and 61 % of the total Cu and Zn taken up, respectively. This shows the high demand of castor bean Iris for B and Mn for fruit yield.
Resumo:
In this paper, using the worldwide dataset of bilateral tariff rates, we explore how serious the omission of bilateral tariff rates in gravity is. Our findings are as follow. Firstly, the omission of bilateral tariff rates seems not to be so serious in terms of omitted-variable biases because the coefficients for the usual gravity variables do not change before or after their inclusion. Secondly, while the widely-used dummy variable of regional trade agreement could not play an alternative role in place of tariff rates, the inclusion of time-invariant pair fixed effects in addition to the time-variant importer fixed effects and exporter fixed effects accounts for the omission of tariff rates. The inclusion of those fixed effects makes the coefficient for bilateral tariff rates insignificant.
Resumo:
Mode of access: Internet.
Resumo:
Includes bibliographical references.
Resumo:
Micronutrient insufficiency, low dietary fiber, and high saturated fat intake have been associated with chronic diseases. Micronutrient insufficiencies may exacerbate poor health outcomes for persons with type 2 diabetes and minority status. We examined dietary intakes using the Recommended Dietary Allowances (RDAs) of micronutrients, and Adequate Intakes (AIs) of fiber, and Dietary Guidelines for Americans (DGA) for saturated fat in Haitian-, African-, and Cuban- Americans (n = 868), approximately half of each group with type 2 diabetes. Insufficient intakes of vitamins D and E and calcium were found in over 40 % of the participants. Over 50 % of African- and Cuban- Americans consumed over 10 % of calories from saturated fat. Haitian-Americans were more likely to have insufficiencies in iron, B-vitamins, and vitamins D and E, and less likely to have inadequate intake of saturated fat as compared to Cuban-Americans. Vitamin D insufficiency was more likely for Haitian-Americans as compared to African- Americans. Diabetes status alone did not predict micronutrient insufficiencies; however, Haitian-Americans with no diabetes were more likely to be insufficient in calcium. Adjusting for age, gender, energy, smoking, physical activity, access to health care, and education negated the majority of micronutrient insufficiency differences by ethnicity. These findings suggest that policies are needed to ensure that low-cost, quality produce can be accessed regardless of neighborhood and socioeconomic status.