974 resultados para Oil-paper insulation system


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is used to assess the insulation condition of oil-paper power transformers. Dissipation factor is one of the conventional indicators to analyze insulation ageing status. In this paper, the imaginary admittance of the transformers insulation, after removal of the geometric capacitance, is proposed as an alternative indicator to assist in the interpretation of ageing status. Ageing effects on the imaginary admittance are investigated both through simulation results and experimental results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency Domain Spectroscopy (FDS) is successfully being used to assess the insulation condition of oil filled power transformers. However, it has to date only been implemented on de-energized transformers, which requires the transformers to be shut down for an extended period which can result in significant costs. To solve this issue, a method of implementing FDS under energized condition is proposed here. A chirp excitation waveform is used to replace the conventional sinusoidal waveform to reduce the measurement time in this method. Investigation of the dielectric response under the influence of a high voltage stress at power frequency is reported based on experimental results. To further understand the insulation ageing process, the geometric capacitance effect is removed to enhance the detection of the ageing signature. This enhancement enables the imaginary part of admittance to be used as a new indicator to assess the ageing status of the insulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The research introduces a promising technique for monitoring the degradation status of oil-paper insulation systems of large power transformers in an online mode and innovative enhancements are also made on the existing offline measurements, which afford more direct understanding of the insulation degradation process. Further, these techniques benefit from a quick measurement owing to the chirp waveform signal application. The techniques are improved and developed on the basis of measuring the impedance response of insulation systems. The feasibility and validity of the techniques was supported by the extensive simulation works as well as experimental investigations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Determining the condition as well as the remaining life of an insulation system is essential for the reliable operation of large oil-filled power transformers. Frequency-domain spectroscopy (FDS) is one of the diagnostic techniques used to identify the dielectric status of a transformer. Currently, this technique can only be implemented on a de-energized transformer. This paper presents an initial investigation into a novel online monitoring method based on FDS dielectric measurements for transformers. The proposed technique specifically aims to address the real operational constraints of online testing. This is achieved by designing an online testing model extending the basic “extended Debye” linear dielectric model and taking unique noise issues only experienced during online measurements into account via simulations. Approaches to signal denoising and potential problems expected to be encountered during online measurements will also be discussed. Using fixed-frequency sinusoidal excitation waveforms will result in a long measurement times. The use of alternatives such as a chirp has been investigated using simulations. The results presented in the paper predict that reliable measurements should be possible during online testing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The overall reliability of a power transformer depends to a great extent on the sound operation of the bushings thereof. Oil impregnated paper (OIP) insulated bushings have been in use for a long time now. In many situations, it becomes necessary to avoid OIP insulation in bushings. In the recent past, a new technological breakthrough has been achieved whereby the OIP is replaced by epoxy resin impregnated crepe paper (RIP) insulation. This new system has several advantages over OIP and has now become the insulation of choice. However, its long time thermal and electrical performance need to be carefully assessed. This paper reports the results of a study of temperature distribution in the body of insulation, based on the ac conductivity of RIP insulation. A method of computing the maximum thermal voltage of this system is also given.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The presence of moisture in oil impregnated paper insulation (OIP) is detrimental to its long time performance. Until recently, it was thought insulation ageing was only a function of temperature and electrical stress. It has now been realized that moisture in all its forms causes rapid degradation of the electrical and mechanical properties with time. In this study, insulation paper samples were conditioned for desired level of moisture and were impregnated with premium quality transformer oil. The oil impregnated samples with 1 to 3 % moisture content were aged at 90 to 130 C. The indices for determining the extent of ageing considered in this work are degree of polymerization (DP), furan, carbon monoxide and carbon dioxide content. These quantities were monitored throughout the ageing experimental run. End-of-life (EOL) criterion used here is the reduction in the value of DP. Phenomenological models for estimating the service life of insulation are proposed and are validated against actual experimental data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results on a resin-rich machine insulation system subjected to varying stresses such as electrical (2.6 to 13.3 MV/m) and thermal (40 to 155° C) acting together. Accelerated electro-thermal aging experiments subsequently have been performed to understand the insulation degradation The interpretations are based on several measured properties like capacitance, loss tangent, ac resistance, leakage current, and partial discharge quantities. The results indicate that the changes in properties are not significant below a certain temperature for any applied stress, Beyond this temperature large variations are observed even for low electrical stresses. Electrothermal aging studies reveal that the acceleration of the insulation degradation and the ultimate time to failure depends on the relative values of temperature and voltage stresses. At lower temperatures, below critical, material characteristics of the system predominate whereas beyond this temperature, other phenomena come into play causing insulation deterioration. During aging under combined stresses, it appears that the prevailing temperature of the system has a significant role in the insulation degradation and ultimate failure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accelerated aging experiments have been conducted on a representative oil-pressboard insulation model to investigate the effect of constant and sequential stresses on the PD behavior using a built-in phase resolved partial discharge analyzer. A cycle of the applied voltage starting from the zero of the positive half cycle was divided into 16 equal phase windows (Φ1 to Φ16) and partial discharge (PD) magnitude distribution in each phase was determined. Based on the experimental results, three stages of aging mechanism were identified. Gumbel's extreme value distribution of the largest element was used to model the first stage of aging process. Second and subsequent stages were modeled using two-parameter Weibull distribution. Spearman's non-parametric rank correlation test statistic and Kolmogrov-Smirnov two sample test were used to relate the aging process of each phase with the corresponding process of the full cycle. To bring out clearly the effect of stress level, its duration and test procedure on the distribution parameters and hence of the aging process, non-parametric ANOVA techniques like Kruskal-Wallis and Fisher's LSD multiple comparison tests were used. Results of the analysis show that two phases (Φ13 and Φ14) near the vicinity of the negative voltage peak were found to contribute significantly to the aging process and their aging mechanism also correlated well with that of the corresponding full cycle mechanism. Attempts have been made to relate these results with the published work of other workers

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frequency domain spectroscopy (FDS) is being used to assess the insulation condition of oil–paper power transformers. However, it has to date only been implemented on de-energised transformers, which requires the transformers to be shut down for an extended period and may cause significant costs. To solve this issue, a newly improved monitoring method based on the FDS principle is proposed to implement the dielectric measurement on energised transformers. Moreover, a chirp waveform excitation and its novel processing method are introduced. Compared with the conventional FDS results, dielectric results from the energised insulation system have higher tanδ values because of the increased losses. To further understand the insulation ageing process, the effects of the geometric capacitance are removed from the measured imaginary admittance of the insulation system to enhance the ageing signature. The resulting imaginary admittance is then shown to correlate well with the central time constant in return voltage measurements results. The proposed methods address the issues on techniques used on energised transformers and provide a clue for on-line FDS diagnostic application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Final report, issued December 1976.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliographical references.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Resin impregnated paper (RIP) is a relatively new insulation system recommended for the use in transformer bushings. In the recent past, RIP has acquired prominence as insulation in bushings, over conventional oil impregnated paper (OIP), in view of its overwhelming advantages the more important among them being low dielectric loss and possibility for positioning the bushing at any desired angle over the transformer. In addition, the fact that such systems do not pose problems of fire hazard is counted as a very important consideration. The disadvantage of RIP compared to OIP, however, is its much higher cost and involved manufacturing process. The temperature rise in RIP bushings under normal operating conditions is seen to be a difficult parameter to control in view of the limited options for effective cooling. It is therefore essential to take serious note of this aspect, to arrest rapid deterioration of bushing. The degradation of dry-type insulation such as RIP is often due to thermal stress. The long time performance thereof, depends strongly, on the maximum operating temperature. With this in view, the Authors have developed a theoretical model and computational method to study the temperature distribution in the body of insulation. The Authors consider that the basis for the model as being the temperature and electric stress aided AC conductivity. The ensuing heat balance (continuity) equations in 2-D cylindrical geometry are treated as a Dirichelet-Neumann boundary value problem.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The most suitable temperature range for domestic purposes is about 200C to 260C .Besides, both cold and hot water appear to be essential frequently for industrial purposes. In summer bringing down the water temperature at a comfortable range causes significant energy consumption. This project aims at saving energy to control water temperature by making water tank insulated .Therefore applying better insulation system which would reduce the disparity between the desired temperature and the actual temperature and hence saving energy significantly. Following the investigation, this project used cotton jacket to insulate the tank and the tank was placed under a paddy straw shade with a view to attaining the maximum energy saving. Finally, it has been found that reduction in energy consumption is to be about 50-60% which is quite satisfactory. Since comfortable temperature range varies from person to person this project thus combines insulating effect with automatic water heater.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical failure of insulation is known to be an extremal random process wherein nominally identical pro-rated specimens of equipment insulation, at constant stress fail at inordinately different times even under laboratory test conditions. In order to be able to estimate the life of power equipment, it is necessary to run long duration ageing experiments under accelerated stresses, to acquire and analyze insulation specific failure data. In the present work, Resin Impregnated Paper (RIP) a relatively new insulation system of choice used in transformer bushings, is taken as an example. The failure data has been processed using proven statistical methods, both graphical and analytical. The physical model governing insulation failure at constant accelerated stress has been assumed to be based on temperature dependent inverse power law model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

O transformador de potência é um importante equipamento utilizado no sistema elétrico de potência, responsável por transmitir energia elétrica ou potência elétrica de um circuito a outro e transformar tensões e correntes de um circuito elétrico. O transformador de potência tem ampla aplicação, podendo ser utilizado em subestações de usinas de geração, transmissão e distribuição. Neste sentido, mudanças recentes ocorridas no sistema elétrico brasileiro, causadas principalmente pelo aumento considerável de carga e pelo desenvolvimento tecnológico tem proporcionado a fabricação de um transformador com a aplicação de alta tecnologia, aumentando a confiabilidade deste equipamento e, em paralelo, a redução do seu custo global. Tradicionalmente, os transformadores são fabricados com um sistema de isolação que associa isolantes sólidos e celulose, ambos, imersos em óleo mineral isolante, constituição esta que define um limite à temperatura operacional contínua. No entanto, ao se substituir este sistema de isolação formado por papel celulose e óleo mineral isolante por um sistema de isolação semi- híbrida - aplicação de papel NOMEX e óleo vegetal isolante, a capacidade de carga do transformador pode ser aumentada por suportar maiores temperaturas. Desta forma, o envelhecimento do sistema de isolação poderá ser em longo prazo, significativamente reduzido. Esta técnica de aumentar os limites térmicos do transformador pode eliminar, essencialmente, as restrições térmicas associadas à isolação celulósica, provendo uma solução econômica para aperfeiçoar o uso de transformadores de potência, aumentando a sua confiabilidade operacional. Adicionalmente, à aplicação de sensores de fibra óptica, em substituição aos sensores de imagem térmica no monitoramento das temperaturas internas do transformador, se apresentam como importante opção na definição do equacionamento do comportamento do transformador sob o ponto de vista térmico.