993 resultados para Octa(3-aminopropyl)octasilsesquioxane
Resumo:
This study presents the preparation, characterization and application of copper octa(3-aminopropyl)octasilsesquioxane following its subsequent reaction with azide ions (ASCA). The precursor (AC) and the novel compound (ASCA) were characterized by Fourier transform infrared spectra (FTIR), nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR), scanning electronic microscopy (SEM), X-ray diffraction (XRD), Thermogravimetric analyses and voltammetric technique. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E(1/2)(ox)) = 0.30 V and an irreversible process at 1.1 V (vs. Ag/AgCl; NaCl 1.0 M; v = 20 mV s(-1)). The material is very sensitive to nitrite concentrations. The modified graphite paste electrode (GPE-ASCA) gives a linear range from 1.0 x 10(-4) to 4.0 x 10(-3) mol L(-1) for the determination of nitrite, with a detection limit of 2.1 x 10(-4) mol L(-1) and the amperometric sensitivity of 8.04 mA/mol L(-1). (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The chloropropyl silica gel was modified with octa(3-aminopropyl) octasilsesquioxane and characterized by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), spectroscopies, and surface and area porosity. The specific sorption capacity of metallic ions (Cu2+ and Ni2+) increases in the following solvent order: water < ethanol 42% < ethanol < ketone. The high values of the constant (K) in the order of 103 L mol-1 suggested the high adsorbent capacity of the modified silica (SGAPC) for Cu2+ and Ni2+. SGAPC was applied to a separation column and shows recoveries of around 100% of copper in samples of sugar cane spirit, vodka, ginger brandy, and ethanol fuel. © 2013 Devaney Ribeiro Do Carmo et al.
Resumo:
A novel nanostructured composite, azide copper octa (3-aminopropyl)octasilsesquioxane (ASCA) was incorporated into a graphite paste electrode and the electrochemical studies were conducted with cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with ASCA (GPE-ASCA), showed one redox couple with formal potential (E ) = 0.30 V and an irreversible process at 1.1 V (vs Ag/AgCl; NaCl 1.0 mol L-1 ; v = 20 mV s-1 ). The redox couple with (E ) = 0.30V presents an electrocatalytic response for determination of ascorbic acid. The modified electrode gives a linear range from 1.010-4 – 1.010-3 mol L-1 (r = 0.998) for the determination of ascorbic acid with detection limit of 6.910-5 mol L-1 and standard deviation of 2.3% for n = 3 . The amperometric sensitivity was 122.1 mA/mol L-1 for ascorbic acid. The application this electrode was tested and ascorbic acid in three commercial pharmaceutical product (Cebion, Cewin and Redoxon) have been determined.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In the organic-inorganic perovskites family, the < 100 >-oriented type has been extensively investigated as a result of its unique magnetic, optical, and electrical properties, and only one type of < 110 >-oriented hybrid perovskite stabilized by methylammonium and iodoformamidinium cations or the latter themselves has been known so far. In this paper, another novel < 110 >-oriented organic-inorganic perovskite (C6H13N3)-PbBr4 (compound 1) has been prepared by reacting N-(3-aminopropyl)imidazole (API) with PbBr2 in hydrobromic acid. The crystal structure is determined, which indicates that the perovskite is stabilized by API. The introduction of the optically active organic ligand API into the hybrid perovskite results in a red shift and a great enhancement of photoluminescence in the perovskite with respect to organic ligand API itself. These results have been explained according to calculation based on density-functional theory. Moreover, the excellent film processing ability for the perovskite (C6H13N3)PbBr4 together with the improved optical properties makes it have potential application in optoelectronic devices.
Resumo:
The thickness of the gold film and its morphology, including the surface roughness, are very important for getting a good, reproducible response in the SPR technique. Here, we report a novel alternative approach for preparing SPR-active substrates that is completely solution-based. Our strategy is based on self-assembly of the gold colloid monolayer on a (3-aminopropyl)trimethoxysilane-modified glass slide, followed by electroless gold plating. Using this method, the thickness of films can be easily controlled at the nanometer scale by setting the plating time in the same conditions. Surface roughness and morphology of gold films can be modified by both tuning the size of gold nanoparticles and agitation during the plating. Surface evolution of the Au film was followed in real time by UV-vis spectroscopy and in situ SPRS. To assess the surface roughness and electrochemical stability of the Au films, atomic force microscopy and cyclic voltammetry were used. In addition, the stability of the gold adhesion is demonstrated by three methods. The as-prepared Au films on substrates are reproducible and stable, which allows them to be used as electrodes for electrochemical experiments and as platforms for studying SAMs.
Resumo:
New N-(3-aminopropyl) (L-1, L-2) and (2-cyanoethyl) (L-3, L-4) derivatives of a 14-membered tetraazamacrocycle containing pyridine have been synthesized. The protonation constants of L-1 and L-2 and the stability constants of their complexes with Ni2+, Cu2+, Zn2+ and Cd2+ metal ions were determined in aqueous solutions by potentiometry, at 298.2 K and ionic strength 0.10 mol dm(-3) in KNO3. Both compounds have high overall basicity due to the presence of the aminopropyl arms. Their copper(II) complexes exhibit very high stability constants, which sharply decrease for the complexes of the other studied metal ions, as usually happens with polyamine ligands. Mono- and dinuclear complexes are formed with L-2 as well as with L-1, but the latter exhibits mononuclear complexes with slightly higher K-ML values while the dinuclear complexes of L-2 are thermodynamically more stable. The presence of these species in solution was supported by UV-VIS-NIR and EPR spectroscopic data. The single crystal structures of [Cu(H2L2)(ClO4)](3+) and [(CoLCl)-Cl-3](+) revealed that the metal centres are surrounded by the four nitrogen atoms of the macrocycle and one monodentate ligand, adopting distorted square pyramidal geometries. In the [(CoLCl)-Cl-3](+) complex, the macrocycle adopts a folded arrangement with the nitrogen atom opposite to the pyridine at the axial position while in the [Cu(H2L2)(ClO4)](3+) complex, the macrocycle adopts a planar conformation with the three aminopropyl arms located at the same side of the macrocyclic plane.
Resumo:
Presented herein is the synthesis and characterization of a new Fe(III)Zn(II) complex containing a Fe(III)-bound phenolate with a carbonyl functional group, which was anchored to 3-aminopropylfunctionalized silica as the solid support. The catalytic efficiency of the immobilized catalyst in the hydrolysis of 2,4-bis (dinitrophenyl) phosphate is comparable to the homogeneous reaction, and the supported catalyst can be reused for subsequent diester hydrolysis reactions.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A novel composite formed by interaction of a octa(3-chloropropyl)octasilsesquioxane modified with Purpald®, and its subsequent reaction with silver and hexacyanoferrate (III) (AgHSP), was synthesized and initially characterized by Fourier transform infrared spectra (FTIR) and cyclic voltammetry. The cyclic voltammogram of the modified graphite paste electrode with AgHSP, showed one redox couple with formal potential Eθ'=0.64V (vs Ag/AgCl, KNO3, 1.0 mol L-1; v = 20 mV s-1), attributed to the Fe2+(CN)6/ Fe3+(CN)6 process. The redox couple presents an electrocatalytic response for determination of sulfite. The modified electrode showed a linear response from 7.0×10-5 to 1.0×10-3 mol L-1 with the corresponding equation Y(μA) = 18.05 + 29.983×103 [sulfite], and a correlation coefficient of r=0.999. The method showed a detection limit of 0.115×10-4 mol L-1 with a relative standard deviation of ± 4% (n = 3) and amperometric sensitivity of 29.983×10-3A mol L-1. The modified electrode showed a excellent stability and good reproducibility during experiments. © 2013 by ESG.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciência dos Materiais - FEIS