929 resultados para Ocean surface winds
Resumo:
Ocean surface waves are strongly forced by high wind conditions associated with winter storms in the Sea of Japan. They are also modulated by tides and storm surges. The effects of the variability in surface wind forcing, tides and storm surges on the waves are investigated using a wave model, a high-resolution atmospheric mesoscale model and a hydrodynamic ocean circulation model. Five month-long wave model simulations are inducted to examine the sensitivity of ocean waves to various wind forcing fields, tides and storm surges during January 1997. Compared with observed mean wave parameters, results indicate that the high frequency variability in the surface wind filed has very great effect on wave simulation. Tides and storm surges have a significant impact on the waves in nearshores of the Tsushima-kaihyo, but not for other regions in the Sea of Japan. High spatial and temporal resolution and good quality surface wind products will be crucial for the prediction of surface waves in the JES and other marginal seas, especially near the coastal regions.
Resumo:
An assessment of the fifth Coupled Models Intercomparison Project (CMIP5) models’ simulation of the near-surface westerly wind jet position and strength over the Atlantic, Indian and Pacific sectors of the Southern Ocean is presented. Compared with reanalysis climatologies there is an equatorward bias of 3.7° (inter-model standard deviation of ± 2.2°) in the ensemble mean position of the zonal mean jet. The ensemble mean strength is biased slightly too weak, with the largest biases over the Pacific sector (-1.6±1.1 m/s, 27 -22%). An analysis of atmosphere-only (AMIP) experiments indicates that 41% of the zonal mean position bias comes from coupling of the ocean/ice models to the atmosphere. The response to future emissions scenarios (RCP4.5 and RCP8.5) is characterized by two phases: (i) the period of most rapid ozone recovery (2000-2049) during which there is insignificant change in summer; and (ii) the period 2050-2098 during which RCP4.5 simulations show no significant change but RCP8.5 simulations show poleward shifts (0.30, 0.19 and 0.28°/decade over the Atlantic, Indian and Pacific sectors respectively), and increases in strength (0.06, 0.08 and 0.15 m/s/decade respectively). The models with larger equatorward position biases generally show larger poleward shifts (i.e. state dependence). This inter-model relationship is strongest over the Pacific sector (r=-0.89) and insignificant over the Atlantic sector (r=-0.50). However, an assessment of jet structure shows that over the Atlantic sector jet shift is significantly correlated with jet width whereas over the Pacific sector the distance between the sub-polar and sub-tropical westerly jets appears to be more important.
Resumo:
Sea-surface wind observations of previous generation scatterometers have been successfully assimilated into Numerical Weather Prediction (NWP) models. Impact studies conducted with these assimilation implementations have shown a distinct improvement to model analysis and forecast accuracies. The Advanced Scatterometer (ASCAT), flown on Metop-A, offers an improved sea-surface wind accuracy and better data coverage when compared to the previous generation scatterometers. Five individual case studies are carried out. The effect of including ASCAT data into High Resolution Limited Area Model (HIRLAM) assimilation system (4D-Var) is tested to be neutral-positive for situations with general flow direction from the Atlantic Ocean. For northerly flow regimes the effect is negative. This is later discussed to be caused by problems involving modeling northern flows, and also due to the lack of a suitable verification method. Suggestions and an example of an improved verification method is presented later on. A closer examination of a polar low evolution is also shown. It is found that the ASCAT assimilation scheme improves forecast of the initial evolution of the polar low, but the model advects the strong low pressure centre too fast eastward. Finally, the flaws of the implementation are found small and implementing the ASCAT assimilation scheme into the operational HIRLAM suite is feasible, but longer time period validation is still required.
Resumo:
The authors present the simulation of the tropical Pacific surface wind variability by a low-resolution (R15 horizontal resolution and 18 vertical levels) version of the Center for Ocean-Land-Atmosphere Interactions, Maryland, general circulation model (GCM) when forced by observed global sea surface temperature. The authors have examined the monthly mean surface winds acid precipitation simulated by the model that was integrated from January 1979 to March 1992. Analyses of the climatological annual cycle and interannual variability over the Pacific are presented. The annual means of the simulated zonal and meridional winds agree well with observations. The only appreciable difference is in the region of strong trade winds where the simulated zonal winds are about 15%-20% weaker than observed, The amplitude of the annual harmonics are weaker than observed over the intertropical convergence zone and the South Pacific convergence zone regions. The amplitudes of the interannual variation of the simulated zonal and meridional winds are close to those of the observed variation. The first few dominant empirical orthogonal functions (EOF) of the simulated, as well as the observed, monthly mean winds are found to contain a targe amount of high-frequency intraseasonal variations, While the statistical properties of the high-frequency modes, such as their amplitude and geographical locations, agree with observations, their detailed time evolution does not. When the data are subjected to a 5-month running-mean filter, the first two dominant EOFs of the simulated winds representing the low-frequency EI Nino-Southern Oscillation fluctuations compare quite well with observations. However, the location of the center of the westerly anomalies associated with the warm episodes is simulated about 15 degrees west of the observed locations. The model simulates well the progress of the westerly anomalies toward the eastern Pacific during the evolution of a warm event. The simulated equatorial wind anomalies are comparable in magnitude to the observed anomalies. An intercomparison of the simulation of the interannual variability by a few other GCMs with comparable resolution is also presented. The success in simulation of the large-scale low-frequency part of the tropical surface winds by the atmospheric GCM seems to be related to the model's ability to simulate the large-scale low-frequency part of the precipitation. Good correspondence between the simulated precipitation and the highly reflective cloud anomalies is seen in the first two EOFs of the 5-month running means. Moreover, the strong correlation found between the simulated precipitation and the simulated winds in the first two principal components indicates the primary role of model precipitation in driving the surface winds. The surface winds simulated by a linear model forced by the GCM-simulated precipitation show good resemblance to the GCM-simulated winds in the equatorial region. This result supports the recent findings that the large-scale part of the tropical surface winds is primarily linear.
Resumo:
The solid phases from surface sediments, atmospheric dusts, and rivers of the Indian Ocean environment have been analyzed for their clay minerals and quartz. Such data have been used to delimit the transport paths and sources of the detrital minerals in the oceanic deposits. Diagnostic in distinguishing fluvial and eolian inputs to the northern Indian Ocean is a combination of the clay mineral assemblages and of their geographic distributions. River borne solids are the primary components of the Bay of Bengal deposits. The eastern part receives its continental input through the Ganges-Brahmaputra river system, while drainage of the Indian Peninsula by rivers introduces solids to the western part. The former materials are characterized by high illite and chlorite in the clay mineral assemblages; the latter by montmorillonite. The winds over the Bay bear distinctive dust burdens based upon their directions. However, their contributions to the sediments are insignificant. The eastern sector of the Arabian Sea receives major contributions of continental debris from the rivers and the high montmorillonite levels clearly indicate a source in the Indian Peninsula. The rest of the Sea appears to receive most of its land-derived materials from the north, perhaps the desert regions of northern India and West Pakistan, and they are wind-borne. These materials are also transported to the equatorial regions of the Indian Ocean. A gradient in attapulgite, just north of the equator, may indicate an eolian contribution to the Arabian Sea from the African continent. The halogenated hydrocarbon pesticides were assayed in the southwest monsoon winds and enter the Bay of Bengal at levels of a half ton per month, an amount comparable to those introduced by other wind and river systems to the marine environment.
Resumo:
Higher-order spectral analysis is used to detect the presence of secondary and tertiary forced waves associated with the nonlinearity of energetic swell observed in 8- and 13-m water depths. Higher-order spectral analysis techniques are first described and then applied to the field data, followed by a summary of the results.
Resumo:
Wind stress is the most important ocean forcing for driving tropical surface currents. Stress can be estimated from scatterometer-reported wind measurements at 10 m that have been extrapolated to the surface, assuming a neutrally stable atmosphere and no surface current. Scatterometer calibration is designed to account for the assumption of neutral stability; however, the assumption of a particular sea state and negligible current often introduces an error in wind stress estimations. Since the fundamental scatterometer measurement is of the surface radar backscatter (sigma-0) which is related to surface roughness and, thus, stress, we develop a method to estimate wind stress directly from the scatterometer measurements of sigma-0 and their associated azimuth angle and incidence angle using a neural network approach. We compare the results with in situ estimations and observe that the wind stress estimations from this approach are more accurate compared with those obtained from the conventional estimations using 10-m-height wind measurements.
Resumo:
ENGLISH: The following report describes the findings of an "El Niño" project carried out at the Department of Meteorology of the University of California, Los Angeles, at the request of, and with funds provided from, the Inter-American Tropical Tuna Commission. The project was, in its early stages, supervised by Professor M. Neiburger, but was in June 1959 transferred to Professor J. Bjerknes, who thereby became the sole author of this final report. Readers who may be interested in the general background of knowledge of the maritime meteorology of the Eastern Pacific are herewith referred to Professor Neiburger's final report of the "Subtropical Pacific Meteorology Project." That report, submitted in September 1958 to the Office of Naval Research, summarizes the results of all the meteorological soundings released at sea since 1949 from California in the north to Peru in the south. The soundings off Ecuador and Peru were all taken by the "Shellback" expedition during July 1952. Important as this first exploration of the atmosphere over the Eastern Equatorial Pacific was, it did not even begin to explore " El Niño " itself, which is confined to the southern summer season and, moreover, only reaches catastrophic proportions in a few exceptional years. SPANISH: Este estudio da a conocer los resultados de una investigación que, bajo el nombre de Proyecto "El Niño", ha sido efectuada en el Departamento de Meteorología de la Universidad de California, Los Angeles, a solicitud de la Comisión Interamericana del Atún Tropical y con fondos provistos por ésta. En sus primeras etapas, el proyecto fué supervisado por el Profesor M. Neiburger, pero en junio de 1959 fué transferido al Profesor J. Bjerknes, quien de este modo vino a ser el solo autor de este informe final. A los lectores interesados en los conocimientos de fondo de la meteorología marítima del Pacífico Oriental se les recomienda consultar el informe final del Profesor Neiburger intitulado "Subtropical Pacific Meteorology Project". Este informe, sometido a la "Office of Naval Research" en septiembre de 1958 sumariza los resultados de todos los sondeos meteorológicos efectuados en el mar desde 1949 en el área entre California en el norte y Perú en el sur. Todos los sondeos frente al Ecuador y el Perú fueron hechos por la Expedición "Shellback" durante el mes de julio de 1952. Importante como fué esta primera exploración de la atmósfera sobre el Pacífico Ecuatorial del Este, ni siquiera comenzó a explorar "El Niño" en sí, que se confina a la estación de verano en el sur y, más aún, sólo alcanza proporciones catastróficas en unos pocos años excepcionales.
Resumo:
A new algorithm based on the multiparameter neural network is proposed to retrieve wind speed (WS), sea surface temperature (SST), sea surface air temperature, and relative humidity ( RH) simultaneously over the global oceans from Special Sensor Microwave Imager (SSM/I) observations. The retrieved geophysical parameters are used to estimate the surface latent heat flux and sensible heat flux using a bulk method over the global oceans. The neural network is trained and validated with the matchups of SSM/I overpasses and National Data Buoy Center buoys under both clear and cloudy weather conditions. In addition, the data acquired by the 85.5-GHz channels of SSM/I are used as the input variables of the neural network to improve its performance. The root-mean-square (rms) errors between the estimated WS, SST, sea surface air temperature, and RH from SSM/I observations and the buoy measurements are 1.48 m s(-1), 1.54 degrees C, 1.47 degrees C, and 7.85, respectively. The rms errors between the estimated latent and sensible heat fluxes from SSM/I observations and the Xisha Island ( in the South China Sea) measurements are 3.21 and 30.54 W m(-2), whereas those between the SSM/ I estimates and the buoy data are 4.9 and 37.85 W m(-2), respectively. Both of these errors ( those for WS, SST, and sea surface air temperature, in particular) are smaller than those by previous retrieval algorithms of SSM/ I observations over the global oceans. Unlike previous methods, the present algorithm is capable of producing near-real-time estimates of surface latent and sensible heat fluxes for the global oceans from SSM/I data.
Resumo:
C band RADARSAT-2 fully polarimetric (fine quad-polarization mode, HH+VV+HV+VH) synthetic aperture radar (SAR) images are used to validate ocean surface waves measurements using the polarimetric SAR wave retrieval algorithm, without estimating the complex hydrodynamic modulation transfer function, even under large radar incidence angles. The linearly polarized radar backscatter cross sections (RBCS) are first calculated with the copolarization (HH, VV) and cross-polarization (HV, VH) RBCS and the polarization orientation angle. Subsequently, in the azimuth direction, the vertically and linearly polarized RBCS are used to measure the wave slopes. In the range direction, we combine horizontally and vertically polarized RBCS to estimate wave slopes. Taken together, wave slope spectra can be derived using estimated wave slopes in azimuth and range directions. Wave parameters extracted from the resultant wave slope spectra are validated with colocated National Data Buoy Center (NDBC) buoy measurements (wave periods, wavelengths, wave directions, and significant wave heights) and are shown to be in good agreement.
Resumo:
A one-dimensional mixed-layer model, including a Mellor-Yamada level 2.5 turbulence closure scheme, was implemented to investigate the dynamical and thermal structures of the ocean surface mixed layer in the northern South China Sea. The turbulent kinetic energy released through wave breaking was incorporated into the model as a source of energy at the ocean surface, and the influence of the breaking waves on the mixed layer was studied. The numerical simulations show that the simulated SST is overestimated in summer without the breaking waves. However, the cooler SST is simulated when the effect of the breaking waves is considered, the corresponding discrepancy with the observed data decreases up to 20% and the MLD calculated averagely deepens 3.8 m. Owing to the wave-enhanced turbulence mixing in the summertime, the stratification at the bottom of the mixed layer was modified and the temperature gradient spread throughout the whole thermocline compared with the concentrated distribution without wave breaking.
Resumo:
Analytical representations of the high frequency spectra of ocean wave and its variation due to the variation of ocean surface current are derived from the wave-number spectrum balance equation. The ocean surface imaging formulation of real aperture radar (RAR) is given using electromagnetic wave backscattering theory of ocean surface and the modulations of ocean surface winds, currents and their variations to RAR are described. A general representation of the phase modulation induced by the ocean surface motion is derived according to standard synthetic aperture radar (SAR) imaging theory. The detectability of ocean current and sea bottom topography by imaging radar is discussed. The results constitute the theoretical basis for detecting ocean wave fields, ocean surface winds, ocean surface current fields, sea bottom topography, internal wave and so on.
Resumo:
As an important physical process at the air-sea interface, wave movement and breaking have a significant effect on the ocean surface mixed layer (OSML). When breaking waves occur at the ocean surface, turbulent kinetic energy (TKE) is input downwards, and a sublayer is formed near the surface and turbulence vertical mixing is intensively enhanced. A one-dimensional ocean model including the Mellor-Yamada level 2.5 turbulence closure equations was employed in our research on variations in turbulent energy budget within OSML. The influence of wave breaking could be introduced into the model by modifying an existing surface boundary condition of the TKE equation and specifying its input. The vertical diffusion and dissipation of TKE were effectively enhanced in the sublayer when wave breaking was considered. Turbulent energy dissipated in the sublayer was about 92.0% of the total depth-integrated dissipated TKE, which is twice higher than that of non-wave breaking. The shear production of TKE decreased by 3.5% because the mean flow fields tended to be uniform due to wave-enhanced turbulent mixing. As a result, a new local equilibrium between diffusion and dissipation of TKE was reached in the wave-enhanced layer. Below the sublayer, the local equilibrium between shear production and dissipation of TKE agreed with the conclusion drawn from the classical law-of-the-wall (Craig and Banner, 1994).