999 resultados para Occupancy models
Resumo:
Coexistence of sympatric species is mediated by resource partitioning. Pumas occur sympatrically with jaguars throughout most of the jaguar's range but few studies have investigated space partitioning between both species. Here, camera trapping and occupancy models accounting for imperfect detection were employed in a Bayesian framework to investigate space partitioning between the jaguar and puma in Emas National Park (ENP), central Brazil. Jaguars were estimated to occupy 54.1% and pumas 39.3% of the sample sites. Jaguar occupancy was negatively correlated with distance to water and positively correlated with the amount of dense habitat surrounding the camera trap. Puma occupancy only showed a weak negative correlation with distance to water and with jaguar presence. Both species were less often present at the same site than expected under independent distributions. Jaguars had a significantly higher detection probability at cameras on roads than at off-road locations. For pumas, detection was similar on and off-road. Results indicate that both differences in habitat use and active avoidance shape space partitioning between jaguars and pumas in ENP. Considering its size, the jaguar is likely the competitively dominant of the two species. Owing to its habitat preferences, suitable jaguar habitat outside the park is probably sparse. Consequently, the jaguar population is likely largely confined to the park, while the puma population is known to extend into ENP's surroundings. (C) 2011 Deutsche Gesellschaft fur Saugetierkunde. Published by Elsevier GmbH. All rights reserved.
Resumo:
Funding — Forest Enterprise Scotland and the University of Aberdeen provided funding for the project. The Carnegie Trust supported the lead author, E. McHenry, in this research through the award of a tuition fees bursary.
Resumo:
Failure to detect a species at sites where it is present (i.e. imperfect detection) is known to occur frequently, but this is often disregarded in monitoring programs and metapopulation studies. Here we modelled for the first time the probability of patch occupancy by a threatened small mammal, the southern water vole (Arvicola sapidus, while accounting for the probability of detection given occupancy. Based on replicated presence sign surveys conducted in autumn (November–December 2013) and winter (February–March 2014) in a farmland landscape, we used occupancy detection modelling to test the effects of vegetation, sampling effort, observer experience, and rainfall on detection probability. We then assessed whether occupancy was related to patch size, isolation, vegetation, or presence of water, after correcting for imperfect detection. The mean detection probabilities of water vole signs in autumn (0.71) and winter (0.81) indicated that false absences may be generated in about 20–30% of occupied patches surveyed by a single observer on a single occasion. There was no statistical support for the effects of covariates on detectability. After controlling for imperfect detection, the mean probabilities of occupancy in autumn (0.31) and winter (0.29) were positively related to patch size and presence of water, and negatively so, albeit weakly, to patch isolation. Overall, our study underlined the importance of accounting for imperfect detection in sign surveys of small mammals such as water voles, pointing out the need to use occupancy detection modelling together with replicate surveys for accurately estimating occupancy and the factors affecting it.
Resumo:
Failure to detect a species in an area where it is present is a major source of error in biological surveys. We assessed whether it is possible to optimize single-visit biological monitoring surveys of highly dynamic freshwater ecosystems by framing them a priori within a particular period of time. Alternatively, we also searched for the optimal number of visits and when they should be conducted. We developed single-species occupancy models to estimate the monthly probability of detection of pond-breeding amphibians during a four-year monitoring program. Our results revealed that detection probability was species-specific and changed among sampling visits within a breeding season and also among breeding seasons. Thereby, the optimization of biological surveys with minimal survey effort (a single visit) is not feasible as it proves impossible to select a priori an adequate sampling period that remains robust across years. Alternatively, a two-survey combination at the beginning of the sampling season yielded optimal results and constituted an acceptable compromise between sampling efficacy and survey effort. Our study provides evidence of the variability and uncertainty that likely affects the efficacy of monitoring surveys, highlighting the need of repeated sampling in both ecological studies and conservation management.
Resumo:
Population viability analyses (PVA) are increasingly used in metapopulation conservation plans. Two major types of models are commonly used to assess vulnerability and to rank management options: population-based stochastic simulation models (PSM such as RAMAS or VORTEX) and stochastic patch occupancy models (SPOM). While the first set of models relies on explicit intrapatch dynamics and interpatch dispersal to predict population levels in space and time, the latter is based on spatially explicit metapopulation theory where the probability of patch occupation is predicted given the patch area and isolation (patch topology). We applied both approaches to a European tree frog (Hyla arborea) metapopulation in western Switzerland in order to evaluate the concordances of both models and their applications to conservation. Although some quantitative discrepancies appeared in terms of network occupancy and equilibrium population size, the two approaches were largely concordant regarding the ranking of patch values and sensitivities to parameters, which is encouraging given the differences in the underlying paradigms and input data.
Resumo:
Ecology and conservation require reliable data on the occurrence of animals and plants. A major source of bias is imperfect detection, which, however, can be corrected for by estimation of detectability. In traditional occupancy models, this requires repeat or multi-observer surveys. Recently, time-to-detection models have been developed as a cost-effective alternative, which requires no repeat surveys and hence costs could be halved. We compared the efficiency and reliability of time-to-detection and traditional occupancy models under varying survey effort. Two observers independently searched for 17 plant species in 44100m(2) Swiss grassland quadrats and recorded the time-to-detection for each species, enabling detectability to be estimated with both time-to-detection and traditional occupancy models. In addition, we gauged the relative influence on detectability of species, observer, plant height and two measures of abundance (cover and frequency). Estimates of detectability and occupancy under both models were very similar. Rare species were more likely to be overlooked; detectability was strongly affected by abundance. As a measure of abundance, frequency outperformed cover in its predictive power. The two observers differed significantly in their detection ability. Time-to-detection models were as accurate as traditional occupancy models, but their data easier to obtain; thus they provide a cost-effective alternative to traditional occupancy models for detection-corrected estimation of occurrence.
Resumo:
Documenting changes in distribution is necessary for understanding species' response to environmental changes, but data on species distributions are heterogeneous in accuracy and resolution. Combining different data sources and methodological approaches can fill gaps in knowledge about the dynamic processes driving changes in species-rich, but data-poor regions. We combined recent bird survey data from the Neotropical Biodiversity Mapping Initiative (NeoMaps) with historical distribution records to estimate potential changes in the distribution of eight species of Amazon parrots in Venezuela. Using environmental covariates and presence-only data from museum collections and the literature, we first used maximum likelihood to fit a species distribution model (SDM) estimating a historical maximum probability of occurrence for each species. We then used recent, NeoMaps survey data to build single-season occupancy models (OM) with the same environmental covariates, as well as with time- and effort-dependent detectability, resulting in estimates of the current probability of occurrence. We finally calculated the disagreement between predictions as a matrix of probability of change in the state of occurrence. Our results suggested negative changes for the only restricted, threatened species, Amazona barbadensis, which has been independently confirmed with field studies. Two of the three remaining widespread species that were detected, Amazona amazonica, Amazona ochrocephala, also had a high probability of negative changes in northern Venezuela, but results were not conclusive for Amazona farinosa. The four remaining species were undetected in recent field surveys; three of these were most probably absent from the survey locations (Amazona autumnalis, Amazona mercenaria and Amazona festiva), while a fourth (Amazona dufresniana) requires more intensive targeted sampling to estimate its current status. Our approach is unique in taking full advantage of available, but limited data, and in detecting a high probability of change even for rare and patchily-distributed species. However, it is presently limited to species meeting the strong assumptions required for maximum-likelihood estimation with presence-only data, including very high detectability and representative sampling of its historical distribution.
Resumo:
Understanding changes over time in the distribution of interacting native and invasive species that may be symptomatic of competitive exclusion is critical to identify the need for and effectiveness of management interventions. Occupancy models greatly increase the robustness of inference that can be made from presence/absence data when species are imperfectly detected, and recent novel developments allow for the quantification of the strength of interaction between pairs of species. We used a two-species multi-season occupancy model to quantify the impact of the invasive American mink on the native European mink in Spain through the analysis of their co-occurrence pattern over twelve years (2000 - 2011) in the entire Spanish range of European mink distribution, where both species were detected by live trapping but American mink were culled. We detected a negative temporal trend in the rate of occupancy of European mink and a simultaneous positive trend in the occupancy of American mink. The species co-occurred less often than expected and the native mink was more likely to become extinct from sites occupied by the invasive species. Removal of American mink resulted in a high probability of local extinction where it co-occurred with the endemic mink, but the overall increase in the probability of occupancy over the last decade indicates that the ongoing management is failing to halt its spread. More intensive culling effort where both species co-exist as well as in adjacent areas where the invasive American mink is found at high densities is required in order to stop thedecline of European mink.
Resumo:
This paper discusses a multi-layer feedforward (MLF) neural network incident detection model that was developed and evaluated using field data. In contrast to published neural network incident detection models which relied on simulated or limited field data for model development and testing, the model described in this paper was trained and tested on a real-world data set of 100 incidents. The model uses speed, flow and occupancy data measured at dual stations, averaged across all lanes and only from time interval t. The off-line performance of the model is reported under both incident and non-incident conditions. The incident detection performance of the model is reported based on a validation-test data set of 40 incidents that were independent of the 60 incidents used for training. The false alarm rates of the model are evaluated based on non-incident data that were collected from a freeway section which was video-taped for a period of 33 days. A comparative evaluation between the neural network model and the incident detection model in operation on Melbourne's freeways is also presented. The results of the comparative performance evaluation clearly demonstrate the substantial improvement in incident detection performance obtained by the neural network model. The paper also presents additional results that demonstrate how improvements in model performance can be achieved using variable decision thresholds. Finally, the model's fault-tolerance under conditions of corrupt or missing data is investigated and the impact of loop detector failure/malfunction on the performance of the trained model is evaluated and discussed. The results presented in this paper provide a comprehensive evaluation of the developed model and confirm that neural network models can provide fast and reliable incident detection on freeways. (C) 1997 Elsevier Science Ltd. All rights reserved.
Resumo:
Aripiprazole is a unique antipsychotic that seems to act as a partial agonist at dopamine D2-receptors, contrasting with other drugs in this class, which are silent antagonists. Aripiprazole may also bind to serotonin receptors. Both neurotransmitters may play major roles in aversion-, anxiety-and panic-related behaviours. Thus, the present work tested the hypothesis that this antipsychotic could also have anti-aversive properties. Male Wistar rats received injections of aripiprazole (0.1-10 mg/kg) and were tested in the open field, in the elevated plus and T mazes (EPM and ETM, respectively) and in a contextual fear conditioning paradigm. Aripiprazole (1mg/kg) increased the percentage of entries onto the open arms of the EPM and attenuated escape responses in the ETM. In the latter model, the dose of 0.1 mg/kg also decreased the latency to leave the enclosed arm, suggesting anxiolytic- and panicolytic-like properties. This dose also decreased the time spent in freezing in a contextual fear conditioning. No significant motor effects were observed at these doses. The present data support the hypothesis that aripiprazole could inhibit anxiety-related responses. Acting as a partial agonist at dopamine receptors, this drug could effectively treat schizophrenia and, in contrast with most antipsychotic drugs, alleviate aversive states.
Resumo:
The existing parking simulations, as most simulations, are intended to gain insights of a system or to make predictions. The knowledge they have provided has built up over the years, and several research works have devised detailed parking system models. This thesis work describes the use of an agent-based parking simulation in the context of a bigger parking system development. It focuses more on flexibility than on fidelity, showing the case where it is relevant for a parking simulation to consume dynamically changing GIS data from external, online sources and how to address this case. The simulation generates the parking occupancy information that sensing technologies should eventually produce and supplies it to the bigger parking system. It is built as a Java application based on the MASON toolkit and consumes GIS data from an ArcGis Server. The application context of the implemented parking simulation is a university campus with free, on-street parking places.
Resumo:
The genomic loci occupied by RNA polymerase (RNAP) III have been characterized in human culture cells by genome-wide chromatin immunoprecipitations, followed by deep sequencing (ChIP-seq). These studies have shown that only ∼40% of the annotated 622 human tRNA genes and pseudogenes are occupied by RNAP-III, and that these genes are often in open chromatin regions rich in active RNAP-II transcription units. We have used ChIP-seq to characterize RNAP-III-occupied loci in a differentiated tissue, the mouse liver. Our studies define the mouse liver RNAP-III-occupied loci including a conserved mammalian interspersed repeat (MIR) as a potential regulator of an RNAP-III subunit-encoding gene. They reveal that synteny relationships can be established between a number of human and mouse RNAP-III genes, and that the expression levels of these genes are significantly linked. They establish that variations within the A and B promoter boxes, as well as the strength of the terminator sequence, can strongly affect RNAP-III occupancy of tRNA genes. They reveal correlations with various genomic features that explain the observed variation of 81% of tRNA scores. In mouse liver, loci represented in the NCBI37/mm9 genome assembly that are clearly occupied by RNAP-III comprise 50 Rn5s (5S RNA) genes, 14 known non-tRNA RNAP-III genes, nine Rn4.5s (4.5S RNA) genes, and 29 SINEs. Moreover, out of the 433 annotated tRNA genes, half are occupied by RNAP-III. Transfer RNA gene expression levels reflect both an underlying genomic organization conserved in dividing human culture cells and resting mouse liver cells, and the particular promoter and terminator strengths of individual genes.
Resumo:
This paper has three primary aims: to establish an effective means for modelling mainland-island metapopulations inhabiting a dynamic landscape: to investigate the effect of immigration and dynamic changes in habitat on metapopulation patch occupancy dynamics; and to illustrate the implications of our results for decision-making and population management. We first extend the mainland-island metapopulation model of Alonso and McKane [Bull. Math. Biol. 64:913-958,2002] to incorporate a dynamic landscape. It is shown, for both the static and the dynamic landscape models, that a suitably scaled version of the process converges to a unique deterministic model as the size of the system becomes large. We also establish that. under quite general conditions, the density of occupied patches, and the densities of suitable and occupied patches, for the respective models, have approximate normal distributions. Our results not only provide us with estimates for the means and variances that are valid at all stages in the evolution of the population, but also provide a tool for fitting the models to real metapopulations. We discuss the effect of immigration and habitat dynamics on metapopulations, showing that mainland-like patches heavily influence metapopulation persistence, and we argue for adopting measures to increase connectivity between this large patch and the other island-like patches. We illustrate our results with specific reference to examples of populations of butterfly and the grasshopper Bryodema tuberculata.
Resumo:
To provide biological insights into transcriptional regulation, a couple of groups have recently presented models relating the promoter DNA-bound transcription factors (TFs) to downstream gene’s mean transcript level or transcript production rates over time. However, transcript production is dynamic in response to changes of TF concentrations over time. Also, TFs are not the only factors binding to promoters; other DNA binding factors (DBFs) bind as well, especially nucleosomes, resulting in competition between DBFs for binding at same genomic location. Additionally, not only TFs, but also some other elements regulate transcription. Within core promoter, various regulatory elements influence RNAPII recruitment, PIC formation, RNAPII searching for TSS, and RNAPII initiating transcription. Moreover, it is proposed that downstream from TSS, nucleosomes resist RNAPII elongation.
Here, we provide a machine learning framework to predict transcript production rates from DNA sequences. We applied this framework in the S. cerevisiae yeast for two scenarios: a) to predict the dynamic transcript production rate during the cell cycle for native promoters; b) to predict the mean transcript production rate over time for synthetic promoters. As far as we know, our framework is the first successful attempt to have a model that can predict dynamic transcript production rates from DNA sequences only: with cell cycle data set, we got Pearson correlation coefficient Cp = 0.751 and coefficient of determination r2 = 0.564 on test set for predicting dynamic transcript production rate over time. Also, for DREAM6 Gene Promoter Expression Prediction challenge, our fitted model outperformed all participant teams, best of all teams, and a model combining best team’s k-mer based sequence features and another paper’s biologically mechanistic features, in terms of all scoring metrics.
Moreover, our framework shows its capability of identifying generalizable fea- tures by interpreting the highly predictive models, and thereby provide support for associated hypothesized mechanisms about transcriptional regulation. With the learned sparse linear models, we got results supporting the following biological insights: a) TFs govern the probability of RNAPII recruitment and initiation possibly through interactions with PIC components and transcription cofactors; b) the core promoter amplifies the transcript production probably by influencing PIC formation, RNAPII recruitment, DNA melting, RNAPII searching for and selecting TSS, releasing RNAPII from general transcription factors, and thereby initiation; c) there is strong transcriptional synergy between TFs and core promoter elements; d) the regulatory elements within core promoter region are more than TATA box and nucleosome free region, suggesting the existence of still unidentified TAF-dependent and cofactor-dependent core promoter elements in yeast S. cerevisiae; e) nucleosome occupancy is helpful for representing +1 and -1 nucleosomes’ regulatory roles on transcription.