995 resultados para Observing response


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este estudo avaliou se relações entre os componentes do estímulo modelo complexo exerceriam controle condicional em tarefas de matching-to-sample simultâneo. Na Fase 1, 3 crianças com necessidades especiais de ensino foram expostas ao treino das relações A1B1 e A2B2 e ao teste das respectivas relações simétricas. em seguida, as contingências de treino exigiram respostas de observação diferenciais que consistiram no estabelecimento de relações condicionais de identidade entre estímulos complexos (relações AB-AB) precedendo o acesso ao treino das relações condicionais ABX. Neste treino, diante de estímulos modelos complexos cujos componentes sustentavam condicionalidade treinada (A1B1 e A2B2), X1 foi o estímulo de escolha correto; X2 exerceu esta função quando os componentes do estímulo modelo não sustentavam tal relação (A1B2 e A2B1). Na Fase 2, ocorreria o treino PQ, testes QP e PQX que avaliariam a extensão do controle condicional definido pelas relações entre os estímulos P e Q. As três crianças registraram a aprendizagem das relações AB, a emergência das relações simétricas e índices elevados de acerto nas respostas de observação diferenciais, ou seja, no estabelecimento das relações condicionais de identidade com estímulos complexos. Contudo, as três demonstraram relações de controle distintas das previstas no treino ABX, sendo, portanto, o experimento finalizado na Fase 1. Tais resultados sugerem uma independência funcional entre as habilidades discriminativas exigidas nas duas contingências de ensino de relações condicionais com estímulos modelo complexos.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A portion of operant literature supports significant production of knowledge about problem solving, observation response and contingency relations between responses with different probabilities of occurrence (Premack Principle). This study investigated possible convergences between a descriptive analysis of ordinal behavior and such portion of the operant literature. Conceptual and methodological analysis of publications have highlighted the relevance of the sequence of events functionally related to the characterization of the production of knowledge about problem solving, observation response and the Premack Principle enabling approaches between programs of research on complex behavioral repertoires as well as expansions in research strategies concerning ordinal responding.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Task classification is introduced as a method for the evaluation of monitoring behaviour in different task situations. On the basis of an analysis of different monitoring tasks, a task classification system comprising four task 'dimensions' is proposed. The perceptual speed and flexibility of closure categories, which are identified with signal discrimination type, comprise the principal dimension in this taxonomy, the others being sense modality, the time course of events, and source complexity. It is also proposed that decision theory provides the most complete method for the analysis of performance in monitoring tasks. Several different aspects of decision theory in relation to monitoring behaviour are described. A method is also outlined whereby both accuracy and latency measures of performance may be analysed within the same decision theory framework. Eight experiments and an organizational study are reported. The results show that a distinction can be made between the perceptual efficiency (sensitivity) of a monitor and his criterial level of response, and that in most monitoring situations, there is no decrement in efficiency over the work period, but an increase in the strictness of the response criterion. The range of tasks exhibiting either or both of these performance trends can be specified within the task classification system. In particular, it is shown that a sensitivity decrement is only obtained for 'speed' tasks with a high stimulation rate. A distinctive feature of 'speed' tasks is that target detection requires the discrimination of a change in a stimulus relative to preceding stimuli, whereas in 'closure' tasks, the information required for the discrimination of targets is presented at the same point In time. In the final study, the specification of tasks yielding sensitivity decrements is shown to be consistent with a task classification analysis of the monitoring literature. It is also demonstrated that the signal type dimension has a major influence on the consistency of individual differences in performance in different tasks. The results provide an empirical validation for the 'speed' and 'closure' categories, and suggest that individual differences are not completely task specific but are dependent on the demands common to different tasks. Task classification is therefore shovn to enable improved generalizations to be made of the factors affecting 1) performance trends over time, and 2) the consistencv of performance in different tasks. A decision theory analysis of response latencies is shown to support the view that criterion shifts are obtained in some tasks, while sensitivity shifts are obtained in others. The results of a psychophysiological study also suggest that evoked potential latency measures may provide temporal correlates of criterion shifts in monitoring tasks. Among other results, the finding that the latencies of negative responses do not increase over time is taken to invalidate arousal-based theories of performance trends over a work period. An interpretation in terms of expectancy, however, provides a more reliable explanation of criterion shifts. Although the mechanisms underlying the sensitivity decrement are not completely clear, the results rule out 'unitary' theories such as observing response and coupling theory. It is suggested that an interpretation in terms of the memory data limitations on information processing provides the most parsimonious explanation of all the results in the literature relating to sensitivity decrement. Task classification therefore enables the refinement and selection of theories of monitoring behaviour in terms of their reliability in generalizing predictions to a wide range of tasks. It is thus concluded that task classification and decision theory provide a reliable basis for the assessment and analysis of monitoring behaviour in different task situations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação (mestrado)—Universidade de Brasília, Instituto de Psicologia, Departamento de Processos Psicológicos Básicos, Programa de Pós-Graduação em Ciências do Comportamento, 2016.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Our motor and perceptual representations of actions seem to be intimately linked and the human mirror neuron system (MNS) has been proposed as the mediator. In two experiments, we presented biological or non-biological movement stimuli that were either congruent or incongruent to a required response prompted by a tone. When the tone occurred with the onset of the last movement in a series, i.e., it was perceived during the movement presentation, congruent biological stimuli resulted in faster reaction times than congruent non-biological stimuli. The opposite was observed for incongruent stimuli. When the tone was presented after visual movement stimulation, however, no such interaction was present. This implies that biological movement stimuli only affect motor behaviour during visual processing but not thereafter. These data suggest that the MNS is an “online” system; longstanding repetitive visual stimulation (Experiment 1) has no benefit in comparison to only one or two repetitions (Experiment 2).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The response of surface structures to tunnelling induced ground movements is an area of great importance for any urban tunnelling project. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of aluminium beams of varying stiffness to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction behaviour. Results to date indicate that the relative structure-soil stiffness is the governing factor in determining how a structure will respond to tunnelling. This parameter is highly dependent on both the structure and soil stiffness. It is also shown that contrary to common assumptions in the literature, negligible axial strains are transferred into the structure. This paper outlines the results of the research to date. © 2010 Taylor & Francis Group, London.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding how buildings respond to tunnelling induced ground movements is an area of great importance for many urban tunnelling projects. Testing described in this paper aims to investigate soil structure interaction effects by observing the response of elastic and non elastic beams of varying stiffness and geometry to tunnelling, using the 8 m diameter beam centrifuge at Cambridge University. Soil and structure displacements are extensively monitored through a photo imaging technique which enables a detailed analysis of the interaction mechanisms. Results demonstrate that buildings can significantly modify greenfield ground movements in both the vertical and horizontal planes. The magnitude of the modification is shown to be strongly dependent on the relative building stiffness. It is also shown that negligible horizontal strains are transferred into the model buildings. This can have significant implications for commonly adopted damage assessment methods. © 2012 Taylor & Francis Group.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nistor, N., Dascalu, M., Stavarache, L.L., Serafin, Y., & Trausan-Matu, S. (2015). Informal Learning in Online Knowledge Communities: Predicting Community Response to Visitor Inquiries. In G. Conole, T. Klobucar, C. Rensing, J. Konert & É. Lavoué (Eds.), 10th European Conf. on Technology Enhanced Learning (pp. 447–452). Toledo, Spain: Springer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We develop a theory for the food intake of a predator that can switch between multiple prey species. The theory addresses empirical observations of prey switching and is based on the behavioural assumption that a predator tends to continue feeding on prey that are similar to the prey it has consumed last, in terms of, e.g., their morphology, defences, location, habitat choice, or behaviour. From a predator's dietary history and the assumed similarity relationship among prey species, we derive a general closed-form multi-species functional response for describing predators switching between multiple prey species. Our theory includes the Holling type II functional response as a special case and makes consistent predictions when populations of equivalent prey are aggregated or split. An analysis of the derived functional response enables us to highlight the following five main findings. (1) Prey switching leads to an approximate power-law relationship between ratios of prey abundance and prey intake, consistent with experimental data. (2) In agreement with empirical observations, the theory predicts an upper limit of 2 for the exponent of such power laws. (3) Our theory predicts deviations from power-law switching at very low and very high prey-abundance ratios. (4) The theory can predict the diet composition of a predator feeding on multiple prey species from diet observations for predators feeding only on pairs of prey species. (5) Predators foraging on more prey species will show less pronounced prey switching than predators foraging on fewer prey species, thus providing a natural explanation for the known difficulties of observing prey switching in the field. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Meteorological measurements from Lerwick Observatory, Shetland (60°09′N, 1°08′W), are compared with short-term changes in Climax neutron counter cosmic ray measurements. For transient neutron count reductions of 10–12%, broken cloud becomes at least 10% more frequent on the neutron minimum day, above expectations from sampling. This suggests a rapid timescale (1 day) cloud response to cosmic ray changes. However, larger or smaller neutron count reductions do not coincide with cloud responses exceeding sampling effects. Larger events are too rare to provide a robust signal above the sampling noise. Smaller events are too weak to be observed above the natural variability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study evaluated the response to increasing levels of neurally adjusted ventilatory assist (NAVA), a mode converting electrical activity of the diaphragm (EAdi) into pressure, regulated by a proportionality constant called the NAVA level. Fourteen rabbits were studied during baseline, resistive loading and ramp increases of the NAVA level. EAdi, airway (Paw) and esophageal pressure (Pes), Pes pressure time product (PTPes), breathing pattern, and blood gases were measured. Resistive loading increased PTPes and EAdi. P(a)(CO)(2) increased with high load but not during low load. Increasing NAVA levels increased Paw until a breakpoint where the Paw increase was reduced despite increasing NAVA level. At this breakpoint, Pes, PTPes, EAdi, and P(a)(CO)(2) were similar to baseline. Further increase of the NAVA level reduced Pes, PTPes and EAdi without changes in ventilation. In conclusion, observing the trend in Paw during a ramp increase of the NAVA level allows determination of a level where the inspiratory effort matches unloaded conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

El desarrollo da las nuevas tecnologías permite a los ingenieros llevar al límite el funcionamiento de los circuitos integrados (Integrated Circuits, IC). Las nuevas generaciones de procesadores, DSPs o FPGAs son capaces de procesar la información a una alta velocidad, con un alto consumo de energía, o esperar en modo de baja potencia con el mínimo consumo posible. Esta gran variación en el consumo de potencia y el corto tiempo necesario para cambiar de un nivel al otro, afecta a las especificaciones del Módulo de Regulador de Tensión (Voltage Regulated Module, VRM) que alimenta al IC. Además, las características adicionales obligatorias, tales como adaptación del nivel de tensión (Adaptive Voltage Positioning, AVP) y escalado dinámico de la tensión (Dynamic Voltage Scaling, DVS), imponen requisitos opuestas en el diseño de la etapa de potencia del VRM. Para poder soportar las altas variaciones de los escalones de carga, el condensador de filtro de salida del VRM se ha de sobredimensionar, penalizando la densidad de energía y el rendimiento durante la operación de DVS. Por tanto, las actuales tendencias de investigación se centran en mejorar la respuesta dinámica del VRM, mientras se reduce el tamaño del condensador de salida. La reducción del condensador de salida lleva a menor coste y una prolongación de la vida del sistema ya que se podría evitar el uso de condensadores voluminosos, normalmente implementados con condensadores OSCON. Una ventaja adicional es que reduciendo el condensador de salida, el DVS se puede realizar más rápido y con menor estrés de la etapa de potencia, ya que la cantidad de carga necesaria para cambiar la tensión de salida es menor. El comportamiento dinámico del sistema con un control lineal (Control Modo Tensión, VMC, o Control Corriente de Pico, Peak Current Mode Control, PCMC,…) está limitado por la frecuencia de conmutación del convertidor y por el tamaño del filtro de salida. La reducción del condensador de salida se puede lograr incrementando la frecuencia de conmutación, así como incrementando el ancho de banda del sistema, y/o aplicando controles avanzados no-lineales. Usando esos controles, las variables del estado se saturan para conseguir el nuevo régimen permanente en un tiempo mínimo, así como el filtro de salida, más específicamente la pendiente de la corriente de la bobina, define la respuesta de la tensión de salida. Por tanto, reduciendo la inductancia de la bobina de salida, la corriente de bobina llega más rápido al nuevo régimen permanente, por lo que una menor cantidad de carga es tomada del condensador de salida durante el tránsito. El inconveniente de esa propuesta es que el rendimiento del sistema es penalizado debido al incremento de pérdidas de conmutación y las corrientes RMS. Para conseguir tanto la reducción del condensador de salida como el alto rendimiento del sistema, mientras se satisfacen las estrictas especificaciones dinámicas, un convertidor multifase es adoptado como estándar para aplicaciones VRM. Para asegurar el reparto de las corrientes entre fases, el convertidor multifase se suele implementar con control de modo de corriente. Para superar la limitación impuesta por el filtro de salida, la segunda posibilidad para reducir el condensador de salida es aplicar alguna modificación topológica (Topologic modifications) de la etapa básica de potencia para incrementar la pendiente de la corriente de bobina y así reducir la duración de tránsito. Como el transitorio se ha reducido, una menor cantidad de carga es tomada del condensador de salida bajo el mismo escalón de la corriente de salida, con lo cual, el condensador de salida se puede reducir para lograr la misma desviación de la tensión de salida. La tercera posibilidad para reducir el condensador de salida del convertidor es introducir un camino auxiliar de energía (additional energy path, AEP) para compensar el desequilibrio de la carga del condensador de salida reduciendo consecuentemente la duración del transitorio y la desviación de la tensión de salida. De esta manera, durante el régimen permanente, el sistema tiene un alto rendimiento debido a que el convertidor principal con bajo ancho de banda es diseñado para trabajar con una frecuencia de conmutación moderada para conseguir requisitos estáticos. Por otro lado, el comportamiento dinámico durante los transitorios es determinado por el AEP con un alto ancho de banda. El AEP puede ser implementado como un camino resistivo, como regulador lineal (Linear regulator, LR) o como un convertidor conmutado. Las dos primeras implementaciones proveen un mayor ancho de banda, acosta del incremento de pérdidas durante el transitorio. Por otro lado, la implementación del convertidor computado presenta menor ancho de banda, limitado por la frecuencia de conmutación, aunque produce menores pérdidas comparado con las dos anteriores implementaciones. Dependiendo de la aplicación, la implementación y la estrategia de control del sistema, hay una variedad de soluciones propuestas en el Estado del Arte (State-of-the-Art, SoA), teniendo diferentes propiedades donde una solución ofrece más ventajas que las otras, pero también unas desventajas. En general, un sistema con AEP ideal debería tener las siguientes propiedades: 1. El impacto del AEP a las pérdidas del sistema debería ser mínimo. A lo largo de la operación, el AEP genera pérdidas adicionales, con lo cual, en el caso ideal, el AEP debería trabajar por un pequeño intervalo de tiempo, solo durante los tránsitos; la otra opción es tener el AEP constantemente activo pero, por la compensación del rizado de la corriente de bobina, se generan pérdidas innecesarias. 2. El AEP debería ser activado inmediatamente para minimizar la desviación de la tensión de salida. Para conseguir una activación casi instantánea, el sistema puede ser informado por la carga antes del escalón o el sistema puede observar la corriente del condensador de salida, debido a que es la primera variable del estado que actúa a la perturbación de la corriente de salida. De esa manera, el AEP es activado con casi cero error de la tensión de salida, logrando una menor desviación de la tensión de salida. 3. El AEP debería ser desactivado una vez que el nuevo régimen permanente es detectado para evitar los transitorios adicionales de establecimiento. La mayoría de las soluciones de SoA estiman la duración del transitorio, que puede provocar un transitorio adicional si la estimación no se ha hecho correctamente (por ejemplo, si la corriente de bobina del convertidor principal tiene un nivel superior o inferior al necesitado, el regulador lento del convertidor principal tiene que compensar esa diferencia una vez que el AEP es desactivado). Otras soluciones de SoA observan las variables de estado, asegurando que el sistema llegue al nuevo régimen permanente, o pueden ser informadas por la carga. 4. Durante el transitorio, como mínimo un subsistema, o bien el convertidor principal o el AEP, debería operar en el lazo cerrado. Implementando un sistema en el lazo cerrado, preferiblemente el subsistema AEP por su ancho de banda elevado, se incrementa la robustez del sistema a los parásitos. Además, el AEP puede operar con cualquier tipo de corriente de carga. Las soluciones que funcionan en el lazo abierto suelen preformar el control de balance de carga con mínimo tiempo, así reducen la duración del transitorio y tienen un impacto menor a las pérdidas del sistema. Por otro lado, esas soluciones demuestran una alta sensibilidad a las tolerancias y parásitos de los componentes. 5. El AEP debería inyectar la corriente a la salida en una manera controlada, así se reduce el riesgo de unas corrientes elevadas y potencialmente peligrosas y se incrementa la robustez del sistema bajo las perturbaciones de la tensión de entrada. Ese problema suele ser relacionado con los sistemas donde el AEP es implementado como un convertidor auxiliar. El convertidor auxiliar es diseñado para una potencia baja, con lo cual, los dispositivos elegidos son de baja corriente/potencia. Si la corriente no es controlada, bajo un pico de tensión de entrada provocada por otro parte del sistema (por ejemplo, otro convertidor conectado al mismo bus), se puede llegar a un pico en la corriente auxiliar que puede causar la perturbación de tensión de salida e incluso el fallo de los dispositivos del convertidor auxiliar. Sin embargo, cuando la corriente es controlada, usando control del pico de corriente o control con histéresis, la corriente auxiliar tiene el control con prealimentación (feed-forward) de tensión de entrada y la corriente es definida y limitada. Por otro lado, si la solución utiliza el control de balance de carga, el sistema puede actuar de forma deficiente si la tensión de entrada tiene un valor diferente del nominal, provocando que el AEP inyecta/toma más/menos carga que necesitada. 6. Escalabilidad del sistema a convertidores multifase. Como ya ha sido comentado anteriormente, para las aplicaciones VRM por la corriente de carga elevada, el convertidor principal suele ser implementado como multifase para distribuir las perdidas entre las fases y bajar el estrés térmico de los dispositivos. Para asegurar el reparto de las corrientes, normalmente un control de modo corriente es usado. Las soluciones de SoA que usan VMC son limitadas a la implementación con solo una fase. Esta tesis propone un nuevo método de control del flujo de energía por el AEP y el convertidor principal. El concepto propuesto se basa en la inyección controlada de la corriente auxiliar al nodo de salida donde la amplitud de la corriente es n-1 veces mayor que la corriente del condensador de salida con las direcciones apropiadas. De esta manera, el AEP genera un condensador virtual cuya capacidad es n veces mayor que el condensador físico y reduce la impedancia de salida. Como el concepto propuesto reduce la impedancia de salida usando el AEP, el concepto es llamado Output Impedance Correction Circuit (OICC) concept. El concepto se desarrolla para un convertidor tipo reductor síncrono multifase con control modo de corriente CMC (incluyendo e implementación con una fase) y puede operar con la tensión de salida constante o con AVP. Además, el concepto es extendido a un convertidor de una fase con control modo de tensión VMC. Durante la operación, el control de tensión de salida de convertidor principal y control de corriente del subsistema OICC están siempre cerrados, incrementando la robustez a las tolerancias de componentes y a los parásitos del cirquito y permitiendo que el sistema se pueda enfrentar a cualquier tipo de la corriente de carga. Según el método de control propuesto, el sistema se puede encontrar en dos estados: durante el régimen permanente, el sistema se encuentra en el estado Idle y el subsistema OICC esta desactivado. Por otro lado, durante el transitorio, el sistema se encuentra en estado Activo y el subsistema OICC está activado para reducir la impedancia de salida. El cambio entre los estados se hace de forma autónoma: el sistema entra en el estado Activo observando la corriente de condensador de salida y vuelve al estado Idle cunado el nuevo régimen permanente es detectado, observando las variables del estado. La validación del concepto OICC es hecha aplicándolo a un convertidor tipo reductor síncrono con dos fases y de 30W cuyo condensador de salida tiene capacidad de 140μF, mientras el factor de multiplicación n es 15, generando en el estado Activo el condensador virtual de 2.1mF. El subsistema OICC es implementado como un convertidor tipo reductor síncrono con PCMC. Comparando el funcionamiento del convertidor con y sin el OICC, los resultados demuestran que se ha logrado una reducción de la desviación de tensión de salida con factor 12, tanto con funcionamiento básico como con funcionamiento AVP. Además, los resultados son comparados con un prototipo de referencia que tiene la misma etapa de potencia y un condensador de salida físico de 2.1mF. Los resultados demuestran que los dos sistemas tienen el mismo comportamiento dinámico. Más aun, se ha cuantificado el impacto en las pérdidas del sistema operando bajo una corriente de carga pulsante y bajo DVS. Se demuestra que el sistema con OICC mejora el rendimiento del sistema, considerando las pérdidas cuando el sistema trabaja con la carga pulsante y con DVS. Por lo último, el condensador de salida de sistema con OICC es mucho más pequeño que el condensador de salida del convertidor de referencia, con lo cual, por usar el concepto OICC, la densidad de energía se incrementa. En resumen, las contribuciones principales de la tesis son: • El concepto propuesto de Output Impedance Correction Circuit (OICC), • El control a nivel de sistema basado en el método usado para cambiar los estados de operación, • La implementación del subsistema OICC en lazo cerrado conjunto con la implementación del convertidor principal, • La cuantificación de las perdidas dinámicas bajo la carga pulsante y bajo la operación DVS, y • La robustez del sistema bajo la variación del condensador de salida y bajo los escalones de carga consecutiva. ABSTRACT Development of new technologies allows engineers to push the performance of the integrated circuits to its limits. New generations of processors, DSPs or FPGAs are able to process information with high speed and high consumption or to wait in low power mode with minimum possible consumption. This huge variation in power consumption and the short time needed to change from one level to another, affect the specifications of the Voltage Regulated Module (VRM) that supplies the IC. Furthermore, additional mandatory features, such as Adaptive Voltage Positioning (AVP) and Dynamic Voltage Scaling (DVS), impose opposite trends on the design of the VRM power stage. In order to cope with high load-step amplitudes, the output capacitor of the VRM power stage output filter is drastically oversized, penalizing power density and the efficiency during the DVS operation. Therefore, the ongoing research trend is directed to improve the dynamic response of the VRM while reducing the size of the output capacitor. The output capacitor reduction leads to a smaller cost and longer life-time of the system since the big bulk capacitors, usually implemented with OSCON capacitors, may not be needed to achieve the desired dynamic behavior. An additional advantage is that, by reducing the output capacitance, dynamic voltage scaling (DVS) can be performed faster and with smaller stress on the power stage, since the needed amount of charge to change the output voltage is smaller. The dynamic behavior of the system with a linear control (Voltage mode control, VMC, Peak Current Mode Control, PCMC,…) is limited by the converter switching frequency and filter size. The reduction of the output capacitor can be achieved by increasing the switching frequency of the converter, thus increasing the bandwidth of the system, and/or by applying advanced non-linear controls. Applying nonlinear control, the system variables get saturated in order to reach the new steady-state in a minimum time, thus the output filter, more specifically the output inductor current slew-rate, determines the output voltage response. Therefore, by reducing the output inductor value, the inductor current reaches faster the new steady state, so a smaller amount of charge is taken from the output capacitor during the transient. The drawback of this approach is that the system efficiency is penalized due to increased switching losses and RMS currents. In order to achieve both the output capacitor reduction and high system efficiency, while satisfying strict dynamic specifications, a Multiphase converter system is adopted as a standard for VRM applications. In order to ensure the current sharing among the phases, the multiphase converter is usually implemented with current mode control. In order to overcome the limitation imposed by the output filter, the second possibility to reduce the output capacitor is to apply Topologic modifications of the basic power stage topology in order to increase the slew-rate of the inductor current and, therefore, reduce the transient duration. Since the transient is reduced, smaller amount of charge is taken from the output capacitor under the same load current, thus, the output capacitor can be reduced to achieve the same output voltage deviation. The third possibility to reduce the output capacitor of the converter is to introduce an additional energy path (AEP) to compensate the charge unbalance of the output capacitor, consequently reducing the transient time and output voltage deviation. Doing so, during the steady-state operation the system has high efficiency because the main low-bandwidth converter is designed to operate at moderate switching frequency, to meet the static requirements, whereas the dynamic behavior during the transients is determined by the high-bandwidth auxiliary energy path. The auxiliary energy path can be implemented as a resistive path, as a Linear regulator, LR, or as a switching converter. The first two implementations provide higher bandwidth, at the expense of increasing losses during the transient. On the other hand, the switching converter implementation presents lower bandwidth, limited by the auxiliary converter switching frequency, though it produces smaller losses compared to the two previous implementations. Depending on the application, the implementation and the control strategy of the system, there is a variety of proposed solutions in the State-of-the-Art (SoA), having different features where one solution offers some advantages over the others, but also some disadvantages. In general, an ideal additional energy path system should have the following features: 1. The impact on the system losses should be minimal. During its operation, the AEP generates additional losses, thus ideally, the AEP should operate for a short period of time, only when the transient is occurring; the other option is to have the AEP constantly on, but due to the inductor current ripple compensation at the output, unnecessary losses are generated. 2. The AEP should be activated nearly instantaneously to prevent bigger output voltage deviation. To achieve near instantaneous activation, the converter system can be informed by the load prior to the load-step or the system can observe the output capacitor current, which is the first system state variable that reacts on the load current perturbation. In this manner, the AEP is turned on with near zero output voltage error, providing smaller output voltage deviation. 3. The AEP should be deactivated once the new steady state is reached to avoid additional settling transients. Most of the SoA solutions estimate duration of the transient which may cause additional transient if the estimation is not performed correctly (e.g. if the main converter inductor current has higher or lower value than needed, the slow regulator of the main converter needs to compensate the difference after the AEP is deactivated). Other SoA solutions are observing state variables, ensuring that the system reaches the new steady state or they are informed by the load. 4. During the transient, at least one subsystem, either the main converter or the AEP, should be in closed-loop. Implementing a closed loop system, preferably the AEP subsystem, due its higher bandwidth, increases the robustness under system tolerances and circuit parasitic. In addition, the AEP can operate with any type of load. The solutions that operate in open loop usually perform minimum time charge balance control, thus reducing the transient length and minimizing the impact on the losses, however they are very sensitive to tolerances and parasitics. 5. The AEP should inject current at the output in a controlled manner, thus reducing the risk of high and potentially damaging currents and increasing robustness on the input voltage deviation. This issue is mainly related to the systems where AEP is implemented as auxiliary converter. The auxiliary converter is designed for small power and, as such, the MOSFETs are rated for small power/currents. If the current is not controlled, due to the some unpredicted spike in input voltage caused by some other part of the system (e.g. different converter), it may lead to a current spike in auxiliary current which will cause the perturbation of the output voltage and even failure of the switching components of auxiliary converter. In the case when the current is controlled, using peak CMC or Hysteretic Window CMC, the auxiliary converter has inherent feed-forwarding of the input voltage in current control and the current is defined and limited. Furthermore, if the solution employs charge balance control, the system may perform poorly if the input voltage has different value than the nominal, causing that AEP injects/extracts more/less charge than needed. 6. Scalability of the system to multiphase converters. As commented previously, in VRM applications, due to the high load currents, the main converters are implemented as multiphase to redistribute losses among the modules, lowering temperature stress of the components. To ensure the current sharing, usually a Current Mode Control (CMC) is employed. The SoA solutions that are implemented with VMC are limited to a single stage implementation. This thesis proposes a novel control method of the energy flow through the AEP and the main converter system. The proposed concept relays on a controlled injection of the auxiliary current at the output node where the instantaneous current value is n-1 times bigger than the output capacitor current with appropriate directions. Doing so, the AEP creates an equivalent n times bigger virtual capacitor at the output, thus reducing the output impedance. Due to the fact that the proposed concept reduces the output impedance using the AEP, it has been named the Output Impedance Correction Circuit (OICC) concept. The concept is developed for a multiphase CMC synchronous buck converter (including a single phase implementation), operating with a constant output voltage and with AVP feature. Further, it is extended to a single phase VMC synchronous buck converter. During the operation, the main converter voltage loop and the OICC subsystem capacitor current loop is constantly closed, increasing the robustness under system tolerances and circuit parasitic and allowing the system to operate with any load-current shape or pattern. According to the proposed control method, the system operates in two states: during the steady-state the system is in the Idle state and the OICC subsystem is deactivated, while during the load-step transient the system is in the Active state and the OICC subsystem is activated in order to reduce the output impedance. The state changes are performed autonomously: the system enters in the Active state by observing the output capacitor current and it returns back to the Idle state when the steady-state operation is detected by observing the state variables. The validation of the OICC concept has been done by applying it to a 30W two phase synchronous buck converter with 140μF output capacitor and with the multiplication factor n equal to 15, generating during the Active state equivalent output capacitor of 2.1mF. The OICC subsystem is implemented as single phase PCMC synchronous buck converter. Comparing the converter operation with and without the OICC the results demonstrate that the 12 times reduction of the output voltage deviation is achieved, for both basic operation and for the AVP operation. Furthermore, the results have been compared to a reference prototype which has the same power stage and a fiscal output capacitor of 2.1mF. The results show that the two systems have the same dynamic behavior. Moreover, an impact on the system losses under the pulsating load and DVS operation has been quantified and it has been demonstrated that the OICC system has improved the system efficiency, considering the losses when the system operates with the pulsating load and the DVS operation. Lastly, the output capacitor of the OICC system is much smaller than the reference design output capacitor, therefore, by applying the OICC concept the power density can be increased. In summary, the main contributions of the thesis are: • The proposed Output Impedance Correction Circuit (OICC) concept, • The system level control based on the used approach to change the states of operation, • The OICC subsystem closed-loop implementation, together with the main converter implementation, • The dynamic losses under the pulsating load and the DVS operation quantification, and • The system robustness on the capacitor impedance variation and consecutive load-steps.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A set of ten RADARSAT-2 images acquired in fully polarimetric mode over a test site with rice fields in Seville, Spain, has been analyzed to extract the main features of the C-band radar backscatter as a function of rice phenology. After observing the evolutions versus phenology of different polarimetric observables and explaining their behavior in terms of scattering mechanisms present in the scene, a simple retrieval approach has been proposed. This algorithm is based on three polarimetric observables and provides estimates from a set of four relevant intervals of phenological stages. The validation against ground data, carried out at parcel level for a set of six stands and up to nine dates per stand, provides a 96% rate of coincidence. Moreover, an equivalent compact-pol retrieval algorithm has been also proposed and validated, providing the same performance at parcel level. In all cases, the inversion is carried out by exploiting a single satellite acquisition, without any other auxiliary information.