149 resultados para Observatories
Resumo:
African coastal regions are expected to experience the highest rates of population growth in coming decades. Fresh groundwater resources in the coastal zone of East Africa (EA) are highly vulnerable to seawater intrusion. Increasing water demand is leading to unsustainable and ill-planned well drilling and abstraction. Wells supplying domestic, industrial and agricultural needs are or have become, in many areas, too saline for use. Climate change, including weather changes and sea level rise, is expected to exacerbate this problem. The multiplicity of physical, demographic and socio-economic driving factors makes this a very challenging issue for management. At present the state and probable evolution of coastal aquifers in EA are not well documented. The UPGro project 'Towards groundwater security in coastal East Africa' brings together teams from Kenya, Tanzania, Comoros Islands and Europe to address this knowledge gap. An integrative multidisciplinary approach, combining the expertise of hydrogeologists, hydrologists and social scientists, is investigating selected sites along the coastal zone in each country. Hydrogeologic observatories have been established in different geologic and climatic settings representative of the coastal EA region, where focussed research will identify the current status of groundwater and identify future threats based on projected demographic and climate change scenarios. Researchers are also engaging with end users as well as local community and stakeholder groups in each area in order to understanding the issues most affecting the communities and searching sustainable strategies for addressing these.
Resumo:
This FAL Bulletin analyses the development of logistics observatories and the construction of regional integration indicators in Latin America and the Caribbean. To this end, it examines experiences, in the region and worldwide, in relation to the construction of indicators and presents a set of policy recommendations for proper implementation. The Mesoamerica Project is used as a case study to construct a set of indicators for logistics infrastructures.
Resumo:
Stray light contamination reduces considerably the precision of photometric of faint stars for low altitude spaceborne observatories. When measuring faint objects, the necessity of coping with stray light contamination arises in order to avoid systematic impacts on low signal-to-noise images. Stray light contamination can be represented by a flat offset in CCD data. Mitigation techniques begin by a comprehensive study during the design phase, followed by the use of target pointing optimisation and post-processing methods. We present a code that aims at simulating the stray-light contamination in low-Earth orbit coming from reflexion of solar light by the Earth. StrAy Light SimulAtor (SALSA) is a tool intended to be used at an early stage as a tool to evaluate the effective visible region in the sky and, therefore to optimise the observation sequence. SALSA can compute Earth stray light contamination for significant periods of time allowing missionwide parameters to be optimised (e.g. impose constraints on the point source transmission function (PST) and/or on the altitude of the satellite). It can also be used to study the behaviour of the stray light at different seasons or latitudes. Given the position of the satellite with respect to the Earth and the Sun, SALSA computes the stray light at the entrance of the telescope following a geometrical technique. After characterising the illuminated region of the Earth, the portion of illuminated Earth that affects the satellite is calculated. Then, the flux of reflected solar photons is evaluated at the entrance of the telescope. Using the PST of the instrument, the final stray light contamination at the detector is calculated. The analysis tools include time series analysis of the contamination, evaluation of the sky coverage and an objects visibility predictor. Effects of the South Atlantic Anomaly and of any shutdown periods of the instrument can be added. Several designs or mission concepts can be easily tested and compared. The code is not thought as a stand-alone mission designer. Its mandatory inputs are a time series describing the trajectory of the satellite and the characteristics of the instrument. This software suite has been applied to the design and analysis of CHEOPS (CHaracterizing ExOPlanet Satellite). This mission requires very high precision photometry to detect very shallow transits of exoplanets. Different altitudes and characteristics of the detector have been studied in order to find the best parameters, that reduce the effect of contamination. © (2014) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.
Resumo:
Currently, most cosmic ray data are obtained by detectors on satellites, aircraft, high-altitude balloons and ground (neutron monitors). In our work, we examined whether Liulin semiconductor spectrometers (simple silicon planar diode detectors with spectrometric properties) located at high mountain observatories could contribute new information to the monitoring of cosmic rays by analyzing data from selected solar events between 2005 and 2013. The decision thresholds and detection limits of these detectors placed at Jungfraujoch (Switzerland; 3475 m a.s.l.; vertical cut-off rigidity 4.5 GV) and Lomnicky stıt (Slovakia; 2633 m a.s.l.; vertical cut-off rigidity 3.84 GV) highmountain observatories were determined. The data showed that only the strongest variations of the cosmic ray flux in this period were detectable. The main limitation in the performance of these detectors is their small sensitive volume and low sensitivity of the PIN photodiode to neutrons.
Resumo:
The international, interdisciplinary biodiversity research project BIOTA AFRICA initiated a standardized biodiversity monitoring network along climatic gradients across the African continent. Due to an identified lack of adequate monitoring designs, BIOTA AFRICA developed and implemented the standardized BIOTA Biodiversity Observatories, that meet the following criteria (a) enable long-term monitoring of biodiversity, potential driving factors, and relevant indicators with adequate spatial and temporal resolution, (b) facilitate comparability of data generated within different ecosystems, (c) allow integration of many disciplines, (d) allow spatial up-scaling, and (e) be applicable within a network approach. A BIOTA Observatory encompasses an area of 1 km2 and is subdivided into 100 1-ha plots. For meeting the needs of sampling of different organism groups, the hectare plot is again subdivided into standardized subplots, whose sizes follow a geometric series. To allow for different sampling intensities but at the same time to characterize the whole square kilometer, the number of hectare plots to be sampled depends on the requirements of the respective discipline. A hierarchical ranking of the hectare plots ensures that all disciplines monitor as many hectare plots jointly as possible. The BIOTA Observatory design assures repeated, multidisciplinary standardized inventories of biodiversity and its environmental drivers, including options for spatial up- and downscaling and different sampling intensities. BIOTA Observatories have been installed along climatic and landscape gradients in Morocco, West Africa, and southern Africa. In regions with varying land use, several BIOTA Observatories are situated close to each other to analyze management effects.
Resumo:
Termites are the most important soil ecosystem engineers of semi-arid and arid habitats. They enhance decomposition processes as well as the subsequent mineralisation of nutrients by bacteria and fungi. Through their construction of galleries, nests and mounds, they promote soil turnover and influence the distribution of nutrients and also alter texture and hydrological properties of soils, thereby affecting the heterogeneity of their ecosystem. The main aim of the present thesis was to define the impact of termites on ecosys-tem functioning in a semi-arid ecosystem. In a baseline study, I assessed the diversity of termite taxa in relation to the amount of precipitation, the vegetation patterns and the land use systems at several sites in Namibia. Subsequently, I focussed on a species that is highly abundant in many African savannas, the fungus growing and mound building species Macro-termes michaelseni (Sjöstedt, 1914). I asked how this species influences the spatial hetero-geneity of soil and vegetation patterns. From repeated samplings at 13 sites in Namibia, I obtained 17 termite taxa of 15 genera. While the type of land use seems to have a minor effect on the termite fauna, the mean annual precipitation explained 96% and the Simpson index of vascular plant diversity 81% of the variation in taxa diversity. The number of termite taxa increased with both of these explanation variables. In contrast to former studies on Macrotermes mounds in several regions of Africa that I reviewed, soil analyses from M. michaelseni mounds in the central Namibian savanna revealed that they contain much higher nitrogen contents when compared to their parent material. Further analyses revealed that nitrate forms a major component of the nitrogen content in termite mounds. As nitrate solves easily in water, evaporation processes are most probably responsible for the transport of solved nitrates to the mound surface and their accumulation there. The analysed mounds in central Namibia contained higher sand propor-tions compared to the mounds of the former studies. Through the higher percentage of coarse and middle sized pores, water moves more easily in sandy soils compared to more clayey soils. In consequence, evaporation-driven nitrate accumulation can occur in the studied mounds at high rates. ff...