985 resultados para Observation systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS) contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Arctic is affected by global environmental change and also by diverse interests from many economic sectors and industries. Over the last decade, various actors have attempted to explore the options for setting up integrated and comprehensive trans-boundary systems for monitoring and observing these impacts. These Arctic Observation Systems (AOS) contribute to the planning, implementation, monitoring and evaluation of environmental change and responsible social and economic development in the Arctic. The aim of this article is to identify the two-way relationship between AOS and tourism. On the one hand, tourism activities account for diverse changes across a broad spectrum of impact fields. On the other hand, due to its multiple and diverse agents and far-reaching activities, tourism is also well-positioned to collect observational data and participate as an actor in monitoring activities. To accomplish our goals, we provide an inventory of tourism-embedded issues and concerns of interest to AOS from a range of destinations in the circumpolar Arctic region, including Alaska, Arctic Canada, Iceland, Svalbard, the mainland European Arctic and Russia. The article also draws comparisons with the situation in Antarctica. On the basis of a collective analysis provided by members of the International Polar Tourism Research Network from across the polar regions, we conclude that the potential role for tourism in the development and implementation of AOS is significant and has been overlooked.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Posiva Oy’s final disposal facility’s encapsulation plant will start to operate in the 2020s. Once the operation starts, the facility is designed to run more than a hundred years. The encapsulation plant will be first of its kind in the world, being part of the solution to solve a global issue of final disposal of nuclear waste. In the encapsulation plant’s fuel handling cell the spent nuclear fuel will be processed to be deposited into the Finnish bedrock, into ONKALO. In the fuel handling cell, the environment is highly radioactive forming a permit-required enclosed space. Remote observation is needed in order to monitor the fuel handling process. The purpose of this thesis is to map (Part I) and compare (Part II) remote observation methods to observe Posiva Oy’s fuel handling cell’s process, and provide a possible theoretical solution for this case. Secondary purpose for this thesis is to provide resources for other remote observation cases, as well as to inform about possible future technology to enable readiness in the design of the encapsulation plant. The approach was to theoretically analyze the mapped remote observation methods. Firstly, the methods were filtered by three environmental challenges. These are the high levels of radiation, the permit-required confined space and the hundred year timespan. Secondly, the most promising methods were selected by the experts designing the facility. Thirdly, a customized feasibility analysis was created and performed on the selected methods to rank the methods with scores. The results are the mapped methods and the feasibility analysis scores. The three highest scoring methods were radiation tolerant camera, fiberscope and audio feed. A combination of these three methods was given as a possible theoretical solution for this case. As this case is first in the world, remote observation methods for it had not been thoroughly researched. The findings in this thesis will act as initial data for the design of the fuel handling cell’s remote observation systems and can potentially effect on the overall design of the facility by providing unique and case specific information. In addition, this thesis could provide resources for other remote observation cases.

Relevância:

60.00% 60.00%

Publicador:

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main purpose of this work is to report the presence of spurious discontinuities in the pattern of diurnal variation of sea level pressure of the three reanalysis datasets from: the National Centers for Environmental Prediction (NCEP) and National Center for Atmospheric Science (R1), the NCEP and Department of Energy (R2), and the European Centre for Medium Range Weather Forecasting (ERA-40). Such discontinuities can be connected to the major changes in the global observing system that have occurred throughout reanalyses years. In the R1, the richest period in discontinuities is 1956-1958, coinciding with the start of modern radiosonde observation network. Rapid increase in the density of surface-based observations from 1967 also had an important impact on both R1 and ERA-40, with larger impact on R1. The reanalyses show discontinuities in the 1970s related to the assimilation of radiances measured by the Vertical Temperature Profile Radiometer and TIROS-N Operational Vertical Sounders onboard satellites. In the ERA-40, which additionally assimilated Special Sensor Microwave/Imager data, there are discontinuities in 1987-1989. The R1 also presents further discontinuities, in 1988-1993 likely connected to replacement/introduction of NOAA-series satellites with different biases, and to the volcanic eruption of Mount Pinatubo in June 1991, which is known to have severely affected measurements of infrared radiances for several years. The discontinuities in 1996-1998 might be partially connected to change in the type of radiosonde, from VIZ-B to VIZ-B2. The R2, which covers only satellite era (1979-on), shows discontinuities mainly in 1992, 1996-1997, and 2001. The discontinuities in 1992 and 2001 might have been caused by change in the satellite measurements and those in 1996-1997 by some changes in land-based observations network. © 2012 Springer-Verlag.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although Recovery is often defined as the less studied and documented phase of the Emergency Management Cycle, a wide literature is available for describing characteristics and sub-phases of this process. Previous works do not allow to gain an overall perspective because of a lack of systematic consistent monitoring of recovery utilizing advanced technologies such as remote sensing and GIS technologies. Taking into consideration the key role of Remote Sensing in Response and Damage Assessment, this thesis is aimed to verify the appropriateness of such advanced monitoring techniques to detect recovery advancements over time, with close attention to the main characteristics of the study event: Hurricane Katrina storm surge. Based on multi-source, multi-sensor and multi-temporal data, the post-Katrina recovery was analysed using both a qualitative and a quantitative approach. The first phase was dedicated to the investigation of the relation between urban types, damage and recovery state, referring to geographical and technological parameters. Damage and recovery scales were proposed to review critical observations on remarkable surge- induced effects on various typologies of structures, analyzed at a per-building level. This wide-ranging investigation allowed a new understanding of the distinctive features of the recovery process. A quantitative analysis was employed to develop methodological procedures suited to recognize and monitor distribution, timing and characteristics of recovery activities in the study area. Promising results, gained by applying supervised classification algorithms to detect localization and distribution of blue tarp, have proved that this methodology may help the analyst in the detection and monitoring of recovery activities in areas that have been affected by medium damage. The study found that Mahalanobis Distance was the classifier which provided the most accurate results, in localising blue roofs with 93.7% of blue roof classified correctly and a producer accuracy of 70%. It was seen to be the classifier least sensitive to spectral signature alteration. The application of the dissimilarity textural classification to satellite imagery has demonstrated the suitability of this technique for the detection of debris distribution and for the monitoring of demolition and reconstruction activities in the study area. Linking these geographically extensive techniques with expert per-building interpretation of advanced-technology ground surveys provides a multi-faceted view of the physical recovery process. Remote sensing and GIS technologies combined to advanced ground survey approach provides extremely valuable capability in Recovery activities monitoring and may constitute a technical basis to lead aid organization and local government in the Recovery management.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The goal of our study is to determine accurate time series of geophysical Earth rotation excitations to learn more about global dynamic processes in the Earth system. For this purpose, we developed an adjustment model which allows to combine precise observations from space geodetic observation systems, such as Satellite Laser Ranging (SLR), Global Navigation Satellite Systems (GNSS), Very Long Baseline Interferometry (VLBI), Doppler Orbit determination and Radiopositioning Integrated on Satellite (DORIS), satellite altimetry and satellite gravimetry in order to separate geophysical excitation mechanisms of Earth rotation. Three polar motion time series are applied to derive the polar motion excitation functions (integral effect). Furthermore we use five time variable gravity field solutions from Gravity Recovery and Climate Experiment (GRACE) to determine not only the integral mass effect but also the oceanic and hydrological mass effects by applying suitable filter techniques and a land-ocean mask. For comparison the integral mass effect is also derived from degree 2 potential coefficients that are estimated from SLR observations. The oceanic mass effect is also determined from sea level anomalies observed by satellite altimetry by reducing the steric sea level anomalies derived from temperature and salinity fields of the oceans. Due to the combination of all geodetic estimated excitations the weaknesses of the individual processing strategies can be reduced and the technique-specific strengths can be accounted for. The formal errors of the adjusted geodetic solutions are smaller than the RMS differences of the geophysical model solutions. The improved excitation time series can be used to improve the geophysical modeling.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

La actividad volcánica interviene en multitud de facetas de la propia actividad humana, no siempre negativas. Sin embargo, son más los motivos de peligrosidad y riesgo que incitan al estudio de la actividad volcánica. Existen razones de seguridad que inciden en el mantenimiento del seguimiento y monitorización de la actividad volcánica para garantizar la vida y la seguridad de los asentamientos antrópicos en las proximidades de los edificios volcánicos. En esta tesis se define e implementa un sistema de monitorización de movimientos de la corteza en las islas de Tenerife y La Palma, donde el impacto social que representa un aumento o variación de la actividad volcánica en las islas es muy severo. Aparte de la alta densidad demográfica del Archipiélago, esta población aumenta significativamente, en diferentes periodos a lo largo del año, debido a la actividad turística que representa la mayor fuente de ingresos de las islas. La población y los centros turísticos se diseminan predominantemente a lo largo de las costas y también a lo largo de los flancos de los edificios volcánicos. Quizá el mantenimiento de estas estructuras sociales y socio-económicas son los motivos más importantes que justifican una monitorización de la actividad volcánica en las Islas Canarias. Recientemente se ha venido trabajando cada vez más en el intento de predecir la actividad volcánica utilizando los nuevos sistemas de monitorización geodésica, puesto que la actividad volcánica se manifiesta anteriormente por deformación de la corteza terrestre y cambios en la fuerza de la gravedad en la zona donde más tarde se registran eventos volcánicos. Los nuevos dispositivos y sensores que se han desarrollado en los últimos años en materias como la geodesia, la observación de la Tierra desde el espacio y el posicionamiento por satélite, han permitido observar y medir tanto la deformación producida en el terreno como los cambios de la fuerza de la gravedad antes, durante y posteriormente a los eventos volcánicos que se producen. Estos nuevos dispositivos y sensores han cambiado las técnicas o metodologías geodésicas que se venían utilizando hasta la aparición de los mismos, renovando métodos clásicos y desarrollando otros nuevos que ya se están afianzando como metodologías probadas y reconocidas para ser usadas en la monitorización volcánica. Desde finales de la década de los noventa del siglo pasado se han venido desarrollando en las Islas Canarias varios proyectos que han tenido como objetivos principales el desarrollo de nuevas técnicas de observación y monitorización por un lado y el diseño de una metodología de monitorización volcánica adecuada, por otro. Se presenta aquí el estudio y desarrollo de técnicas GNSS para la monitorización de deformaciones corticales y su campo de velocidades para las islas de Tenerife y La Palma. En su implementación, se ha tenido en cuenta el uso de la infraestructura geodésica y de monitorización existente en el archipiélago a fin de optimizar costes, además de complementarla con nuevas estaciones para dar una cobertura total a las dos islas. Los resultados obtenidos en los proyectos, que se describen en esta memoria, han dado nuevas perspectivas en la monitorización geodésica de la actividad volcánica y nuevas zonas de interés que anteriormente no se conocían en el entorno de las Islas Canarias. Se ha tenido especial cuidado en el tratamiento y propagación de los errores durante todo el proceso de observación, medida y proceso de los datos registrados, todo ello en aras de cuantificar el grado de fiabilidad de los resultados obtenidos. También en este sentido, los resultados obtenidos han sido verificados con otros procedentes de sistemas de observación radar de satélite, incorporando además a este estudio las implicaciones que el uso conjunto de tecnologías radar y GNSS tendrán en un futuro en la monitorización de deformaciones de la corteza terrestre. ABSTRACT Volcanic activity occurs in many aspects of human activity, and not always in a negative manner. Nonetheless, research into volcanic activity is more likely to be motivated by its danger and risk. There are security reasons that influence the monitoring of volcanic activity in order to guarantee the life and safety of human settlements near volcanic edifices. This thesis defines and implements a monitoring system of movements in the Earth’s crust in the islands of Tenerife and La Palma, where the social impact of an increase (or variation) of volcanic activity is very severe. Aside from the high demographic density of the archipelago, the population increases significantly in different periods throughout the year due to tourism, which represents a major source of revenue for the islands. The population and the tourist centres are mainly spread along the coasts and also along the flanks of the volcanic edifices. Perhaps the preservation of these social and socio-economic structures is the most important reason that justifies monitoring volcanic activity in the Canary Islands. Recently more and more work has been done with the intention of predicting volcanic activity, using new geodesic monitoring systems, since volcanic activity is evident prior to eruption because of a deformation of the Earth’s crust and changes in the force of gravity in the zone where volcanic events will later be recorded. The new devices and sensors that have been developed in recent years in areas such as geodesy, the observation of the Earth from space, and satellite positioning have allowed us to observe and measure the deformation produced in the Earth as well as the changes in the force of gravity before, during, and after the volcanic events occur. The new devices and sensors have changed the geodetic techniques and methodologies that were used previously. The classic methods have been renovated and other newer ones developed that are now vouched for as proven recognised methodologies to be used for volcanic monitoring. Since the end of the 1990s, in the Canary Islands various projects have been developed whose principal aim has been the development of new observation and monitoring techniques on the one hand, and the design of an appropriate volcanic monitoring methodology on the other. The study and development of GNSS techniques for the monitoring of crustal deformations and their velocity field is presented here. To carry out the study, the use of geodetic infrastructure and existing monitoring in the archipelago have been taken into account in order to optimise costs, besides complementing it with new stations for total coverage on both islands. The results obtained in the projects, which are described below, have produced new perspectives in the geodetic monitoring of volcanic activity and new zones of interest which previously were unknown in the environment of the Canary Islands. Special care has been taken with the treatment and propagation of errors during the entire process of observing, measuring, and processing the recorded data. All of this was done in order to quantify the degree of trustworthiness of the results obtained. Also in this sense, the results obtained have been verified with others from satellite radar observation systems, incorporating as well in this study the implications that the joint use of radar technologies and GNSS will have for the future of monitoring deformations in the Earth’s crust.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oceans environmental monitoring and seafloor exploitation need in situ sensors and optical devices (cameras, lights) in various locations and on various carriers in order to initiate and to calibrate environmental models or to operate underwater industrial process supervision. For more than 10 years Ifremer deploys in situ monitoring systems for various seawater parameters and in situ observation systems based on lights and HD Cameras. To be economically operational, these systems must be equipped with a biofouling protection dedicated to the sensors and optical devices used in situ. Indeed, biofouling, in less than 15 days [1] will modify the transducing interfaces of the sensors and causes unacceptable bias on the measurements provided by the in situ monitoring system. In the same way biofouling will decrease the optical properties of windows and thus altering the lighting and the quality fot he images recorded by the camera.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We consider in this paper the optimal stationary dynamic linear filtering problem for continuous-time linear systems subject to Markovian jumps in the parameters (LSMJP) and additive noise (Wiener process). It is assumed that only an output of the system is available and therefore the values of the jump parameter are not accessible. It is a well known fact that in this setting the optimal nonlinear filter is infinite dimensional, which makes the linear filtering a natural numerically, treatable choice. The goal is to design a dynamic linear filter such that the closed loop system is mean square stable and minimizes the stationary expected value of the mean square estimation error. It is shown that an explicit analytical solution to this optimal filtering problem is obtained from the stationary solution associated to a certain Riccati equation. It is also shown that the problem can be formulated using a linear matrix inequalities (LMI) approach, which can be extended to consider convex polytopic uncertainties on the parameters of the possible modes of operation of the system and on the transition rate matrix of the Markov process. As far as the authors are aware of this is the first time that this stationary filtering problem (exact and robust versions) for LSMJP with no knowledge of the Markov jump parameters is considered in the literature. Finally, we illustrate the results with an example.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Earth observations (EO) represent a growing and valuable resource for many scientific, research and practical applications carried out by users around the world. Access to EO data for some applications or activities, like climate change research or emergency response activities, becomes indispensable for their success. However, often EO data or products made of them are (or are claimed to be) subject to intellectual property law protection and are licensed under specific conditions regarding access and use. Restrictive conditions on data use can be prohibitive for further work with the data. Global Earth Observation System of Systems (GEOSS) is an initiative led by the Group on Earth Observations (GEO) with the aim to provide coordinated, comprehensive, and sustained EO and information for making informed decisions in various areas beneficial to societies, their functioning and development. It seeks to share data with users world-wide with the fewest possible restrictions on their use by implementing GEOSS Data Sharing Principles adopted by GEO. The Principles proclaim full and open exchange of data shared within GEOSS, while recognising relevant international instruments and national policies and legislation through which restrictions on the use of data may be imposed.The paper focuses on the issue of the legal interoperability of data that are shared with varying restrictions on use with the aim to explore the options of making data interoperable. The main question it addresses is whether the public domain or its equivalents represent the best mechanism to ensure legal interoperability of data. To this end, the paper analyses legal protection regimes and their norms applicable to EO data. Based on the findings, it highlights the existing public law statutory, regulatory, and policy approaches, as well as private law instruments, such as waivers, licenses and contracts, that may be used to place the datasets in the public domain, or otherwise make them publicly available for use and re-use without restrictions. It uses GEOSS and the particular characteristics of it as a system to identify the ways to reconcile the vast possibilities it provides through sharing of data from various sources and jurisdictions on the one hand, and the restrictions on the use of the shared resources on the other. On a more general level the paper seeks to draw attention to the obstacles and potential regulatory solutions for sharing factual or research data for the purposes that go beyond research and education.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] Therefore the understanding and proper evaluation of the flow and mixing behaviour at microscale becomes a very important issue. In this study, the diffusion behaviour of two reacting solutions of HCI and NaOH were directly observed in a glass/polydimethylsiloxane microfluidic device using adaptive coatings based on the conductive polymer polyaniline that are covalently attached to the microchannel walls. The two liquid streams were combined at the junction of a Y-shaped microchannel, and allowed to diffuse into each other and react. The results showed excellent correlation between optical observation of the diffusion process and the numerical results. A numerical model which is based on finite volume method (FVM) discretisation of steady Navier-Stokes (fluid flow) equations and mass transport equations without reactions was used to calculate the flow variables at discrete points in the finite volume mesh element. The high correlation between theory and practical data indicates the potential of such coatings to monitor diffusion processes and mixing behaviour inside microfluidic channels in a dye free environment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

With the aim of heading towards a more sustainable future, there has been a noticeable increase in the installation of Renewable Energy Sources (RES) in power systems in the latest years. Besides the evident environmental benefits, RES pose several technological challenges in terms of scheduling, operation, and control of transmission and distribution power networks. Therefore, it raised the necessity of developing smart grids, relying on suitable distributed measurement infrastructure, for instance, based on Phasor Measurement Units (PMUs). Not only are such devices able to estimate a phasor, but they can also provide time information which is essential for real-time monitoring. This Thesis falls within this context by analyzing the uncertainty requirements of PMUs in distribution and transmission applications. Concerning the latter, the reliability of PMU measurements during severe power system events is examined, whereas for the first, typical configurations of distribution networks are studied for the development of target uncertainties. The second part of the Thesis, instead, is dedicated to the application of PMUs in low-inertia power grids. The replacement of traditional synchronous machines with inertia-less RES is progressively reducing the overall system inertia, resulting in faster and more severe events. In this scenario, PMUs may play a vital role in spite of the fact that no standard requirements nor target uncertainties are yet available. This Thesis deeply investigates PMU-based applications, by proposing a new inertia index relying only on local measurements and evaluating their reliability in low-inertia scenarios. It also develops possible uncertainty intervals based on the electrical instrumentation currently used in power systems and assesses the interoperability with other devices before and after contingency events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper studies semistability of the recursive Kalman filter in the context of linear time-varying (LTV), possibly nondetectable systems with incorrect noise information. Semistability is a key property, as it ensures that the actual estimation error does not diverge exponentially. We explore structural properties of the filter to obtain a necessary and sufficient condition for the filter to be semistable. The condition does not involve limiting gains nor the solution of Riccati equations, as they can be difficult to obtain numerically and may not exist. We also compare semistability with the notions of stability and stability w.r.t. the initial error covariance, and we show that semistability in a sense makes no distinction between persistent and nonpersistent incorrect noise models, as opposed to stability. In the linear time invariant scenario we obtain algebraic, easy to test conditions for semistability and stability, which complement results available in the context of detectable systems. Illustrative examples are included.