27 resultados para Obfuscation
Resumo:
A cyberwar exists between malware writers and antimalware researchers. At this war's heart rages a weapons race that originated in the 80s with the first computer virus. Obfuscation is one of the latest strategies to camouflage the telltale signs of malware, undermine antimalware software, and thwart malware analysis. Malware writers use packers, polymorphic techniques, and metamorphic techniques to evade intrusion detection systems. The need exists for new antimalware approaches that focus on what malware is doing rather than how it's doing it.
Resumo:
Key stakeholders in the UK charity sector have, in recent years, advocated greater accountability for charity performance. Part of that debate has focussed on the use of conversion ratios as indicators of efficiency, with importance to stakeholders being contrasted with charities’ apparent reluctance to report such measures. Whilst, before 2005, conversion ratios could have been computed from financial statements, changes in the UK charity SORP have radically altered the ability of users to do this. This article explores the impact on the visibility of such information through an analysis of the financial statements of large UK charities before and after the 2005 changes. Overall, the findings suggest that, despite the stated intention of increasing transparency in respect of charity costs, the application of the changes has resulted in charities ‘managing’ the numbers and limiting their disclosures, possibly to the detriment of external stakeholders.
Resumo:
I consider the case for genuinely anonymous web searching. Big data seems to have it in for privacy. The story is well known, particularly since the dawn of the web. Vastly more personal information, monumental and quotidian, is gathered than in the pre-digital days. Once gathered it can be aggregated and analyzed to produce rich portraits, which in turn permit unnerving prediction of our future behavior. The new information can then be shared widely, limiting prospects and threatening autonomy. How should we respond? Following Nissenbaum (2011) and Brunton and Nissenbaum (2011 and 2013), I will argue that the proposed solutions—consent, anonymity as conventionally practiced, corporate best practices, and law—fail to protect us against routine surveillance of our online behavior. Brunton and Nissenbaum rightly maintain that, given the power imbalance between data holders and data subjects, obfuscation of one’s online activities is justified. Obfuscation works by generating “misleading, false, or ambiguous data with the intention of confusing an adversary or simply adding to the time or cost of separating good data from bad,” thus decreasing the value of the data collected (Brunton and Nissenbaum, 2011). The phenomenon is as old as the hills. Natural selection evidently blundered upon the tactic long ago. Take a savory butterfly whose markings mimic those of a toxic cousin. From the point of view of a would-be predator the data conveyed by the pattern is ambiguous. Is the bug lunch or potential last meal? In the light of the steep costs of a mistake, the savvy predator goes hungry. Online obfuscation works similarly, attempting for instance to disguise the surfer’s identity (Tor) or the nature of her queries (Howe and Nissenbaum 2009). Yet online obfuscation comes with significant social costs. First, it implies free riding. If I’ve installed an effective obfuscating program, I’m enjoying the benefits of an apparently free internet without paying the costs of surveillance, which are shifted entirely onto non-obfuscators. Second, it permits sketchy actors, from child pornographers to fraudsters, to operate with near impunity. Third, online merchants could plausibly claim that, when we shop online, surveillance is the price we pay for convenience. If we don’t like it, we should take our business to the local brick-and-mortar and pay with cash. Brunton and Nissenbaum have not fully addressed the last two costs. Nevertheless, I think the strict defender of online anonymity can meet these objections. Regarding the third, the future doesn’t bode well for offline shopping. Consider music and books. Intrepid shoppers can still find most of what they want in a book or record store. Soon, though, this will probably not be the case. And then there are those who, for perfectly good reasons, are sensitive about doing some of their shopping in person, perhaps because of their weight or sexual tastes. I argue that consumers should not have to pay the price of surveillance every time they want to buy that catchy new hit, that New York Times bestseller, or a sex toy.
Resumo:
Context information is used by pervasive networking and context-aware programs to adapt intelligently to different environments and user tasks. As the context information is potentially sensitive, it is often necessary to provide privacy protection mechanisms for users. These mechanisms are intended to prevent breaches of user privacy through unauthorised context disclosure. To be effective, such mechanisms should not only support user specified context disclosure rules, but also the disclosure of context at different granularities. In this paper we describe a new obfuscation mechanism that can adjust the granularity of different types of context information to meet disclosure requirements stated by the owner of the context information. These requirements are specified using a preference model we developed previously and have since extended to provide granularity control. The obfuscation process is supported by our novel use of ontological descriptions that capture the granularity relationship between instances of an object type.
Resumo:
Context: Obfuscation is a common technique used to protect software against mali- cious reverse engineering. Obfuscators manipulate the source code to make it harder to analyze and more difficult to understand for the attacker. Although different ob- fuscation algorithms and implementations are available, they have never been directly compared in a large scale study. Aim: This paper aims at evaluating and quantifying the effect of several different obfuscation implementations (both open source and commercial), to help developers and project manager to decide which one could be adopted. Method: In this study we applied 44 obfuscations to 18 subject applications covering a total of 4 millions lines of code. The effectiveness of these source code obfuscations has been measured using 10 code metrics, considering modularity, size and complexity of code. Results: Results show that some of the considered obfuscations are effective in mak- ing code metrics change substantially from original to obfuscated code, although this change (called potency of the obfuscation) is different on different metrics. In the pa- per we recommend which obfuscations to select, given the security requirements of the software to be protected.
Resumo:
Contemporary integrated circuits are designed and manufactured in a globalized environment leading to concerns of piracy, overproduction and counterfeiting. One class of techniques to combat these threats is circuit obfuscation which seeks to modify the gate-level (or structural) description of a circuit without affecting its functionality in order to increase the complexity and cost of reverse engineering. Most of the existing circuit obfuscation methods are based on the insertion of additional logic (called “key gates”) or camouflaging existing gates in order to make it difficult for a malicious user to get the complete layout information without extensive computations to determine key-gate values. However, when the netlist or the circuit layout, although camouflaged, is available to the attacker, he/she can use advanced logic analysis and circuit simulation tools and Boolean SAT solvers to reveal the unknown gate-level information without exhaustively trying all the input vectors, thus bringing down the complexity of reverse engineering. To counter this problem, some ‘provably secure’ logic encryption algorithms that emphasize methodical selection of camouflaged gates have been proposed previously in literature [1,2,3]. The contribution of this paper is the creation and simulation of a new layout obfuscation method that uses don't care conditions. We also present proof-of-concept of a new functional or logic obfuscation technique that not only conceals, but modifies the circuit functionality in addition to the gate-level description, and can be implemented automatically during the design process. Our layout obfuscation technique utilizes don’t care conditions (namely, Observability and Satisfiability Don’t Cares) inherent in the circuit to camouflage selected gates and modify sub-circuit functionality while meeting the overall circuit specification. Here, camouflaging or obfuscating a gate means replacing the candidate gate by a 4X1 Multiplexer which can be configured to perform all possible 2-input/ 1-output functions as proposed by Bao et al. [4]. It is important to emphasize that our approach not only obfuscates but alters sub-circuit level functionality in an attempt to make IP piracy difficult. The choice of gates to obfuscate determines the effort required to reverse engineer or brute force the design. As such, we propose a method of camouflaged gate selection based on the intersection of output logic cones. By choosing these candidate gates methodically, the complexity of reverse engineering can be made exponential, thus making it computationally very expensive to determine the true circuit functionality. We propose several heuristic algorithms to maximize the RE complexity based on don’t care based obfuscation and methodical gate selection. Thus, the goal of protecting the design IP from malicious end-users is achieved. It also makes it significantly harder for rogue elements in the supply chain to use, copy or replicate the same design with a different logic. We analyze the reverse engineering complexity by applying our obfuscation algorithm on ISCAS-85 benchmarks. Our experimental results indicate that significant reverse engineering complexity can be achieved at minimal design overhead (average area overhead for the proposed layout obfuscation methods is 5.51% and average delay overhead is about 7.732%). We discuss the strengths and limitations of our approach and suggest directions that may lead to improved logic encryption algorithms in the future. References: [1] R. Chakraborty and S. Bhunia, “HARPOON: An Obfuscation-Based SoC Design Methodology for Hardware Protection,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009. [2] J. A. Roy, F. Koushanfar, and I. L. Markov, “EPIC: Ending Piracy of Integrated Circuits,” in 2008 Design, Automation and Test in Europe, 2008, pp. 1069–1074. [3] J. Rajendran, M. Sam, O. Sinanoglu, and R. Karri, “Security Analysis of Integrated Circuit Camouflaging,” ACM Conference on Computer Communications and Security, 2013. [4] Bao Liu, Wang, B., "Embedded reconfigurable logic for ASIC design obfuscation against supply chain attacks,"Design, Automation and Test in Europe Conference and Exhibition (DATE), 2014 , vol., no., pp.1,6, 24-28 March 2014.
Resumo:
The title of this book, Hard Lesson: Reflections on Crime control in Late Modernity, contains a number of clues about its general theoretical direction. It is a book concerned, fist and foremost, with the vagaries of crime control in western neo-liberal and English speaking countries. More specifically, Hard Lessons draws attention to a number of examples in which discrete populations – those who have in one way or another offended against the criminal law - have become the subjects of various forms of stare intervention, regulation and control. We are concerned most of all with the ways in which recent criminal justice policies and practices have resulted in what are variously described as unintended consequences, unforeseen outcomes, unanticipated results, counter-productive effects or negative side effects. At their simplest, such terms refer to the apparent gulf between intention and outcome; they often form the basis for considerable amount of policy reappraisal, soul searching and even nihilistic despair among the mamandirns of crime control. Unintended consequences can, of course, be both positive and negative. Occasionally, crime control measures may result in beneficial outcomes, such as the use of DNA to acquit wrongly convicted prisoners. Generally, however, unforeseen effects tend to be negative and even entirely counterproductive, and/or directly opposite to what were originally intended. All this, of course, presupposes some sort of rational, well meaning and transparent policy making process so beloved by liberal social policy theorists. Yet, as Judith Bessant points out in her chapter, this view of policy formulation tends to obscure the often covert, regulatory and downright malevolent intentions contained in many government policies and practices. Indeed, history is replete with examples of governments seeking to mask their real aims from a prying public eye. Denials and various sorts of ‘techniques of neutralisation’ serve to cloak the real or ‘underlying’ aims of the powerful (Cohen 2000). The latest crop of ‘spin doctors’ and ‘official spokespersons’ has ensured that the process of governmental obfuscation, distortion and concealment remains deeply embedded in neo-liberal forms of governance. There is little new or surprising in this; nor should we be shocked when things ‘go wrong’ in the domain of crime control since many unintended consequences are, more often than not, quite predictable. Prison riots, high rates of recidivism and breaches of supervision orders, expansion rather than contraction of control systems, laws that create the opposite of what was intended – all these are normative features of western crime control. Indeed, without the deep fault lines running between policy and outcome it would be hard to imagine what many policy makers, administrators and practitioners would do: their day to day work practices and (and incomes) are directly dependent upon emergent ‘service delivery’ problems. Despite recurrent howls of official anguish and occasional despondency it is apparent that those involved in the propping up the apparatus of crime control have a vested interest in ensuring that polices and practices remain in an enduring state of review and reform.
Resumo:
Fusion techniques can be used in biometrics to achieve higher accuracy. When biometric systems are in operation and the threat level changes, controlling the trade-off between detection error rates can reduce the impact of an attack. In a fused system, varying a single threshold does not allow this to be achieved, but systematic adjustment of a set of parameters does. In this paper, fused decisions from a multi-part, multi-sample sequential architecture are investigated for that purpose in an iris recognition system. A specific implementation of the multi-part architecture is proposed and the effect of the number of parts and samples in the resultant detection error rate is analysed. The effectiveness of the proposed architecture is then evaluated under two specific cases of obfuscation attack: miosis and mydriasis. Results show that robustness to such obfuscation attacks is achieved, since lower error rates than in the case of the non-fused base system are obtained.
Resumo:
This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.
Resumo:
Malicious software (malware) have significantly increased in terms of number and effectiveness during the past years. Until 2006, such software were mostly used to disrupt network infrastructures or to show coders’ skills. Nowadays, malware constitute a very important source of economical profit, and are very difficult to detect. Thousands of novel variants are released every day, and modern obfuscation techniques are used to ensure that signature-based anti-malware systems are not able to detect such threats. This tendency has also appeared on mobile devices, with Android being the most targeted platform. To counteract this phenomenon, a lot of approaches have been developed by the scientific community that attempt to increase the resilience of anti-malware systems. Most of these approaches rely on machine learning, and have become very popular also in commercial applications. However, attackers are now knowledgeable about these systems, and have started preparing their countermeasures. This has lead to an arms race between attackers and developers. Novel systems are progressively built to tackle the attacks that get more and more sophisticated. For this reason, a necessity grows for the developers to anticipate the attackers’ moves. This means that defense systems should be built proactively, i.e., by introducing some security design principles in their development. The main goal of this work is showing that such proactive approach can be employed on a number of case studies. To do so, I adopted a global methodology that can be divided in two steps. First, understanding what are the vulnerabilities of current state-of-the-art systems (this anticipates the attacker’s moves). Then, developing novel systems that are robust to these attacks, or suggesting research guidelines with which current systems can be improved. This work presents two main case studies, concerning the detection of PDF and Android malware. The idea is showing that a proactive approach can be applied both on the X86 and mobile world. The contributions provided on this two case studies are multifolded. With respect to PDF files, I first develop novel attacks that can empirically and optimally evade current state-of-the-art detectors. Then, I propose possible solutions with which it is possible to increase the robustness of such detectors against known and novel attacks. With respect to the Android case study, I first show how current signature-based tools and academically developed systems are weak against empirical obfuscation attacks, which can be easily employed without particular knowledge of the targeted systems. Then, I examine a possible strategy to build a machine learning detector that is robust against both empirical obfuscation and optimal attacks. Finally, I will show how proactive approaches can be also employed to develop systems that are not aimed at detecting malware, such as mobile fingerprinting systems. In particular, I propose a methodology to build a powerful mobile fingerprinting system, and examine possible attacks with which users might be able to evade it, thus preserving their privacy. To provide the aforementioned contributions, I co-developed (with the cooperation of the researchers at PRALab and Ruhr-Universität Bochum) various systems: a library to perform optimal attacks against machine learning systems (AdversariaLib), a framework for automatically obfuscating Android applications, a system to the robust detection of Javascript malware inside PDF files (LuxOR), a robust machine learning system to the detection of Android malware, and a system to fingerprint mobile devices. I also contributed to develop Android PRAGuard, a dataset containing a lot of empirical obfuscation attacks against the Android platform. Finally, I entirely developed Slayer NEO, an evolution of a previous system to the detection of PDF malware. The results attained by using the aforementioned tools show that it is possible to proactively build systems that predict possible evasion attacks. This suggests that a proactive approach is crucial to build systems that provide concrete security against general and evasion attacks.
Resumo:
This paper contests traditional analyses of high policing, suggesting that it needs to be decoupled (in theoretical terms) from its umbilical linkage to public actors and the preservation and augmentation of state authority. Arguing that conventional conceptualizations of high policing fail to acknowledge the role of private actors, we adopt the term `private high policing' to more accurately reflect the complexity of this paradigm. In particular, we note a long legacy of protecting dominant interests within corporate power structures, as well as increased involvement in outsourced security services for Western states. This has reached its zenith in the recent conflict/reconstruction efforts in Iraq. Eschewing conventional notions of the `proxy' debate, we propose a more complex relationship of obfuscation whereby both public and private high policing actors cross-permeate and coalesce in the pursuit of symbiotic state and corporate objectives.
Resumo:
N-gram analysis is an approach that investigates the structure of a program using bytes, characters, or text strings. A key issue with N-gram analysis is feature selection amidst the explosion of features that occurs when N is increased. The experiments within this paper represent programs as operational code (opcode) density histograms gained through dynamic analysis. A support vector machine is used to create a reference model, which is used to evaluate two methods of feature reduction, which are 'area of intersect' and 'subspace analysis using eigenvectors.' The findings show that the relationships between features are complex and simple statistics filtering approaches do not provide a viable approach. However, eigenvector subspace analysis produces a suitable filter.
Resumo:
This paper presents a new encryption scheme implemented at the physical layer of wireless networks employing orthogonal frequency-division multiplexing (OFDM). The new scheme obfuscates the subcarriers by randomly reserving several subcarriers for dummy data and resequences the training symbol by a new secure sequence. Subcarrier obfuscation renders the OFDM transmission more secure and random, while training symbol resequencing protects the entire physical layer packet, but does not affect the normal functions of synchronization and channel estimation of legitimate users while preventing eavesdroppers from performing these functions. The security analysis shows the system is robust to various attacks by analyzing the search space using an exhaustive key search. Our scheme is shown to have a better performance in terms of search space, key rate and complexity in comparison with other OFDM physical layer encryption schemes. The scheme offers options for users to customize the security level and key rate according to the hardware resource. Its low complexity nature also makes the scheme suitable for resource limited devices. Details of practical design considerations are highlighted by applying the approach to an IEEE 802.11 OFDM system case study.