80 resultados para OXYHYDROXIDES


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regional weathering intensity must have changed dramatically at high latitudes during the Quaternary as a consequence of repeated continental glaciation. Investigation of these glacial/interglacial changes at high temporal resolution is possible with the recent development of Pb isotopes in FeMn oxyhydroxide phases as a proxy for region-specific weathering intensity, where increases in the radiogenic component are thought to correspond to increased continental weathering fluxes. Here we present a Pb isotope record sourced from the FeMn oxyhydroxide fraction in marine sediments from IODP Sites U1302/3 on Orphan Knoll (~3500 mbsl, NW Atlantic), spanning the last 37 ka. Located at the eastern edge of the Laurentide Ice Sheet (LIS), Site U1302/3 is well-placed to monitor changes in weathering intensity associated with LIS glacial history. Overall, the data show a close correspondence to local surface water d18O, with least radiogenic values during times of heavy d18O (glacial maximum) and most radiogenic values during times of light d18O (Holocene). This supports the prediction that weathering intensity in glaciated regions of the North Atlantic correlates with the exposure age of glacial debris. Superimposed on these background trends are extreme radiogenic excursions (e.g. variation in 206Pb/204Pb from ~19.2-21.0) contemporaneous with Heinrich events and the Younger Dryas. These data are substantially more radiogenic than existing records from the NW Atlantic, and most likely represent episodes of exceptionally high inputs of pre-formed FeMn oxyhydroxides during drainage of the LIS. Due to its extreme isotope composition, at least in the NW Atlantic region, Pb would appear to be a good proxy for the fluxes of weathered continental material and perhaps, by inference, nutrients to the surface ocean

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Trace element concentrations and combined Sr- and Nd-isotope compositions were determined on stromatolitic carbonates (microbialites) from the 2.52 Ga Campbellrand carbonate platform (South Africa). Shale-normalised rare earth element and yttrium patterns of the ancient samples are similar to those of modern seawater in having positive La and Y anomalies and in being depleted in light rare earth elements. In contrast to modem seawater (and microbialite proxies), the 2.52 Ga samples lack a negative Ce anomaly but possess a positive Eu anomaly. These latter trace element characteristics are interpreted to reflect anoxic deep ocean waters where, unlike today, hydrothermal Fe input was not oxidised, and scavenged and rare earth elements were not coprecipitated with Fe-oxyhydroxides. The persistence of a positive Eu anomaly in relatively shallow Campbellrand platform waters indicates a dramatic reversal from hydrothermally dominated (Archaean) to continental erosion-dominated (Phanerozoic) rare earth element flux ratio. The dominant hydrothermal input is also expressed in the initial Sr- and Nd-isotope ratios. There is collinear variation in Sr-Nd systematics, which range from primitive values (Sr-87/Sr-86 of 0.702386 and epsilon (Nd) of +2.1) to more evolved crustal ratios. Mixing calculations show that the range in trace element ratios (e.g., Y/Ho) and initial isotope ratios is not a result of contamination by trapped sediment, but that the chemical band isotopic variation reflects carbonate deposition in an environment where different water masses mixed. Calculated Nd flux ratios yield a hydrothermal input into the 2.52 Ga oceans one order of magnitude larger than continental input. Such a change in flux ratio most likely required substantially reduced continental inputs, which could, in turn, reflect a plate tectonic causation (e.g., reduced topography or expansion of epicontinental seas). Copyright (C) 2001 Elsevier Science Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Based on sedimentological and geochemical data, this work relates spectrophotometric measurements with sediment composition and its application in palaeoecological studies of Amazon wetlands. The CIELAB values are directly related to mineralogical and chemical composition, mostly involving quartz, iron oxyhydroxides and sulfides (e.g. pyrite), and total organic carbon. Total organic carbon contents between 0.4-1%, 1-2%, 3-5% and 15-40% were related to L* (lightness) data of 27, 26-15, 7-10 and 7 or less, respectively. The CIELAB values of a deposit in Marabá, Pará, were proportional to variations in quartz and total organic carbon contents, but changes in zones of similar color, mainly in the +a* (red) and +b* (yellow) values of deposits in Calçoene, Amapá and Soure, Pará, indicate a close relationship between total organic carbon content and iron oxyhydroxides and sulfides. Furthermore, the Q7/4 diagram (ratio between the % re?ectance value at 700 nm to that at 400 nm, coupled with L*) indicated iron-rich sediments in the bioturbated mud facies of the Amapá deposit, bioturbated mud and bioturbated sand facies of Soure deposit, and cross-laminated sand and massive sand facies of the Marabá core. Also, organic-rich sediments were found in the bioturbated mud facies of the Amapá deposit, lenticular heterolithic and bioturbated mud facies of the Soure deposit, and laminated mud and peat facies of the Marabá deposit. At the Marabá site, the data suggest an autochthonous influence with peat formation. The coastal wetland sites at Marajó and Amapá represent the development of a typical tidal flat setting with sulfide and iron oxyhydroxides formation during alternated flooding and drying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stable isotope composition of waters (delta H-2, delta O-18) can be used as a natural tracer of hydrologic processes in systems affected by acid mine drainage. We investigated the delta H-2 and delta O-18 values of pore waters from four oxidizing sulfidic mine tailings impoundments in different climatic regions of Chile (Piuquenes at La Andina with Alpine climate, Cauquenes and Caren at El Teniente with Mediterranean climate, and Talabre at the Chuquicamata deposit with hyperarid climate). No clear relationship was found between altitude and isotopic composition. The observed displacement of the tailings pore waters from the local meteoric water line toward higher delta O-18 values (by similar to +2% delta O-18 relative to delta H-2) is partly due to water-rock interaction processes, including hydration and O-isotope exchange with sulfates and Fe(III) oxyhydroxides produced by pyrite oxidation. In most tailings, from the saturated zone toward the surface, isotopically different zones can be distinguished. Zone I is characterized by an upward depletion of H-2 and O-18 in the pore waters from the saturated zone and the lowermost vadose zone, due to ascending diffused isotopically light water triggered by the constant loss of water vapor by evaporation at the surface. In zone II, the capillary flow of a mix of vapor and liquid water causes an evaporative isotopic enrichment in H-2 and O-18. At the top of the tailings in dry climate a zone III between the capillary zone and the surface contains isotopically light diffused and atmospheric water vapor. In temperate climates, the upper part of the profile is affected by recent rainfall and zone III may not differ isotopically from zone II.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A suite of deeper-water hiatal (DWH) stromatolites has been identified in the phosphatic and glauconitic sediments of Aptian to Cenomanian age in the alpine Helvetic thrust-and-fold belt, which represents the former northern Tethyan margin. The most important occurrences date from the latest Early to Late Aptian, the late Early to early middle Albian, and the Early Cenomanian. They are invariably associated with condensed phosphatic beds and occur preferentially on top of hardgrounds or on reworked pebbles and fossils. The zone of optimal stromatolite growth and preservation coincides with the zone of maximal sedimentary condensation, in the deeper parts of phosphogenic areas. The DWH stromatolites show variable morphologies, ranging from isolated laminae ("films") to internally laminated columns and crusts. They reach thicknesses of maximal 10 cm and are either preserved in phosphate or micrite. In the latter case, they may show peripheral impregnations of phosphate or iron oxyhydroxides. The quasi-complete lack of macroscopic sessile organisms suggests that the DWH stromatolites grew close to the upper boundary of an oxygen-minimum zone. Electron-scanning microscopic images show that the Early Cenomanian examples preserved in micrite consist of filamentous structures, which form spaghetti-like assemblages. They are. interpreted as the remains of poikiloaerobic, heterotrophic microbes. Coeval DWH stromatolites are known from the entire European segment of the northern Tethyan margin, and shallow-water counterparts are commonplace on Tethyan carbonate platforms. This indicates that, in general, paleoceanographic and paleoenvironmental conditions were appropriate for stromatolite growth and preservation. The here-described DWH stromatolites proliferated especially in time windows, which followed upon the oceanic anoxic periods OAE la (Early Aptian), lb (latest Aptian and earliest Albian), and Id (latest Albian). They may represent pioneer ecosystems, which thrived during the recovery phases following the "mid"-Cretaceous OAEs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In general, Latosols have low levels of available P, however, the influence of the parent material seems to be decisive in defining the pool and predominant form of P in these soils. This study evaluated P availability by extraction with Mehlich-1 (M-1) and Ion Exchange Resin (IER), from samples of B horizons of Ferric and Perferric Latosols developed from different parent materials. To this end, in addition to the physical and chemical characterization of soils, 10 sequential extractions were performed with M-1 and IER from samples of B horizons (depth between 0.8 and 1.0 m). Total contents of Ca, P, Fe, Al, and Ti were determined after digestion with nitric, hydrofluoric and perchloric acids. The effects of sequential P extractions on Fe oxides were also evaluated from the analyses of dithionite-citrate-bicarbonate and ammonium acid oxalate. The high similarity between contents of P accumulated after sequential extractions with M-1 and IER in soils developed on tuffite indicated a predominance of P-Ca. Higher contents of P after a single IER extraction show greater efficiency in P removal from highly weathered soils, as from the Latosols studied here. The P contents also show the high sensitivity of extractant M-1 in highly buffered soils. Furthermore, a single extraction with extractant M-1 or IER is not sufficient to estimate the amount of labile P in these soils.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Thesis abstract Mine waste is the largest volume of materials handled in the world. The oxidation of sulfidic mine waste may result in the release of acid mine drainage (AMD) rich in heavy metals and arsenic to the environment, one of the major problems the mining industry is facing today. To control and reduce this environmental impact, it is crucial to identify the main geochemical and hydrological processes influencing contaminant liberation, transport, and retention. This thesis presents the results of a geochemical, mineralogical and stable isotope study (δ2H, δ18O, δ34S) from two active porphyry copper tailings impoundments in Mediterranean (Carén tailings impoundment, El Teniente mine, Central Chile) and hyper-arid climate (Talabre tailings impoundment, Chuquicamata, Northern Chile) from the deposition in alkaline environment (pH 10.5) towards acidification after several years of exposure. The major hydrological results were the identification of vertical contaminant and water transport in the uppermost, not water-saturated zone, triggered by capillary rise due to evaporation, and infiltration downwards due to new tailings deposition, and of horizontal transport in the groundwater zone. At the surface of the sedimented tailings, evaporation of pore water led to the precipitation of Na-Ca-Mg sulfates (e.g., gypsum, tenorite), in hyper-arid climate also halite. At the Carén tailings impoundment, renewed deposition in a 4-week interval inhibited a pH decrease below neutral values and the formation of an efflorescent salt crust. At the Talabre tailings impoundment, deposition breaks of several years resulted in the formation of acidic oxidation zones in the timeframe of less than 4 years. This process enabled the transport of liberated Cu, Zn, and Fe via capillary rise to the surface, where these metals precipitated as heavy-metal sulfates (e.g., devilline, krohnkite) and chlorides (eriochalcite, atacamite). Renewed depositing may dissolve efflorescent salts and transport liberated elements towards the groundwater zone. This zone was found to be highly dynamic due to infiltration and mixing with water from different sources, like groundwater, catchment water, and infiltration from superficial waters. There, Cu was found to be partially mobile due to complexation with Cl (in Cl-rich groundwater, Talabre) and dissolved organic matter (in zones with infiltration of catchment water rich in dissolved organic matter, Carén). A laboratory study on the isotopic fractionation of sulfur and oxygen of sulfate in different minerals groups (water-soluble sulfates, low- and high-crystalline Fe(III) oxyhydroxides) contributed to the use of stable isotopes as tracer of geochemical and transport processes for environmental studies. The results highlight that a detailed geochemical, stable isotope and mineralogical study permits the identification of contamination processes and pathways already during the deposition of mine tailings. This knowledge allows the early planning of adequate actions to reduce and control the environmental impact during tailings deposition and after the closing of the impoundment. J. Smuda: Geochemical evolution of active porphyry copper tailings impoundments Résumé de these Les déchets miniers constituent les plus grands volumes de matériel gérés dans le monde. L'oxydation des déchets miniers sulfuriques peut conduire à la libération de drainages miniers acides (DMA) riches en métaux et arsenic dans l'environnement, ce qui est l'un des principaux problèmes de l'industrie minière aujourd'hui. Pour contrôler et réduire ces impacts sur l'environnement, il est crucial d'identifier les principaux processus géochimiques et hydrologiques influençant la libération, le transport et la rétention des contaminants. Cette thèse présente les résultats d'une étude géochimique, minéralogique et des isotopes stables (δ2H, δ18O, δ34S) sur des déchets miniers de 2 sites de dépôt actifs en climat méditerranéen (Dépôt de déchets de Carén, mine de El Teniente, Centre du Chili) et en climat hyper-aride (Dépôt de déchets de Talabre, mine de Chuquicamata, Nord du Chili). L'objectif était d'étudier l'évolution des déchets de la déposition en milieu alcalin (pH = 10.5) vers l'acidification après plusieurs années d'exposition. Le principal résultat hydrologique a été l'identification de 2 types de transport : un transport vertical de l'eau et des contaminants dans la zone non saturée en surface, induit par la montée capillaire due à l'évaporation et par l'infiltration subséquente de la déposition de sédiments frais ; et un transport horizontal dans la zone des eaux souterraines. À la surface des déchets, l'évaporation de l'eau interstitielle conduit à la précipitation de sulfates de Na-Ca-Mg (ex. gypse, ténorite) et halite en climat hyper-aride. Dans le site de Carén, une nouvelle déposition de déchets frais à 4 semaines intervalle a empêché la baise du pH en deçà des valeurs neutres et la formation d'une croûte de sels efflorescentes en surface. Dans le site de Talabre, les fentes de dessiccation des dépôts ont entraîné la formation d'une zone d'oxydation à pH acide en moins de 4 ans. Ce processus a permis la libération et le transport par capillarité de Cu, Zn, Fe vers la surface, où ces éléments précipitent sous forme de sulfates de métaux lourds (ex., dévilline, krohnkite) de chlorures (ex. ériochalcite, atacamite). Une nouvelle déposition de sédiments frais pourrait dissoudre ces sels et les transporter vers la zone des eaux souterraines. Cette dernière zone était très dynamique en raison du mélange d'eaux provenant de différentes sources, comme les eaux souterraines, l'eau de captage et l'infiltration des eaux superficielles. Egalement dans cette zone, le cuivre était partiellement mobile à cause de la formation de complexe avec le chlore (dans les zone riche en Cl, Talabre) et avec la matière organique dissoute (dans les zones où s'infiltre l'eau de captage riche en matière organique, Carén). Une étude en laboratoire sur le fractionnement des isotopes stables de sulfure et d'oxygène des sulfates dans différents groupes de minéraux (sulfates hydrosolubles, sulfures de oxy-hydroxyde de Fe(III) faiblement ou fortement cristallins) a permis d'apporter une contribution à leur utilisation comme traceurs dans l'étude des processus géochimiques et de transport lors d'études environnementales. Les résultats montrent qu'une étude détaillée de la géochimie, des isotopes stables et de la minéralogie permet d'identifier les processus et les voies de contamination déjà pendant la période de dépôt des déchets miniers. Cette connaissance permet de planifier, dès le début de l'exploitation, des mesures adéquates pour réduire et contrôler l'impact sur l'environnement pendant la période de dépôts de déchets miniers et après la fermeture du site.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The distribution and accumulation of the rare earth elements (REE) in the sediments of the Cochin Estuary and adjacent continental shelf were investigated. The rare earth elements like La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu and the heavy metals like Mg, V, Cr, Mn, Fe, Cu, Zn, U, Th were analysed by using standard analytical methods. The Post-Archean Australian Shale composition was used to normalise the rare earth elements. It was found that the sediments were more enriched with the lighter rare earth elements than the heavier ones. The positive correlation between the concentrations of REE, Fe and Mn could explain the precipitation of oxyhydroxides in the study area. The factor analysis and correlation analysis suggest common sources of origin for the REEs. From the Ce-anomalies calculated, it was found that an oxic environment predominates in all stations except the station No. 2. The Eu-anomaly gave an idea that the origin of REEs may be from the feldspar. The parameters like total organic carbon, U/Th ratio, authigenic U, Cu/Zn, V/Cr ratios revealed the oxic environment and thus the depositional behaviour of REEs in the region

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.