978 resultados para OXYGEN 16 TARGET


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background: In mechanically ventilated (MV) cardiac arrest (CA) survivors admitted to the intensive care unit (ICU) avoidance of hypoxia is considered crucial. However, avoidance of hyperoxia may also be important. A conservative approach to oxygen therapy may reduce exposure to both. Methods: We evaluated the introduction of conservative oxygen therapy (target SpO2 88-92% using the lowest FiO2) during MV for resuscitated CA patients admitted to the ICU. Results: We studied 912 arterial blood gas (ABG) datasets: 448 ABGs from 50 'conventional' and 464 ABGs from 50 'conservative' oxygen therapy patients. Compared to the conventional group, conservative group patients had significantly lower PaO2 values and FiO2 exposure (p <0.001, respectively); more received MV in a spontaneous ventilation mode (18% vs 2%; p =0.001) and more were exposed to a FiO 2 of 0.21 (19 vs 0 patients, p =0.001). Additionally, according to mean PaO2, more conservative group patients were classified as normoxaemic (36 vs 16 patients, p <0.01) and fewer as hyperoxaemic (14 vs 33 patients, p <0.01). Finally, ICU length of stay was significantly shorter for conservative group patients (p =0.04). There was no difference in the proportion of survivors discharged from hospital with good neurological outcome (14/23 vs 12/22 patients, p =0.67). Conclusions: Our findings provide preliminary support for the feasibility and physiological safety of conservative oxygen therapy in patients admitted to ICU for MV support after cardiac arrest (Trial registration, NCT01684124).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cool tropical sea surface temperatures (SSTs) are reported for warm Paleogene greenhouse climates based on the d18O of planktonic foraminiferal tests. These results are difficult to reconcile with models of greenhouse gas-forced climate. It has been suggested that this "cool tropics paradox" arises from postdepositional alteration of foraminiferal calcite, yielding erroneously high d18O values. Recrystallization of foraminiferal tests is cryptic and difficult to quantify, and the compilation of robust d18O records from moderately altered material remains challenging. Scanning electron microscopy of planktonic foraminiferal chamber-wall cross sections reveals that the basal area of muricae, pustular outgrowths on the chamber walls of species belonging to the genus Morozovella, contain no mural pores and may be less susceptible to postdepositional alteration. We analyzed the d18O in muricae bases of morozovellids from the central Pacific (Ocean Drilling Program Site 865) by ion microprobe using 10 ?m pits with an analytical reproducibility of ±0.34 per mil (2 standard deviations). In situ measurements of d18O in these domains yield consistently lower values than those published for conventional multispecimen analyses. Assuming that the original d18O is largely preserved in the basal areas of muricae, this new d18O record indicates Early Paleogene (~49-56 Ma) tropical SSTs in the central Pacific were 4°-8°C higher than inferred from the previously published d18O record and that SSTs reached at least ~33°C during the Paleocene-Eocene thermal maximum. This study demonstrates the utility of ion microprobe analysis for generating more reliable paleoclimate records from moderately altered foraminiferal tests preserved in deep-sea sediments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thermal structure of the Pacific Ocean between water depths of about 1 and 4.5 kilometers is estimated from the oxygen isotopic ratio of benthonic foraminifera from deep-drilled and piston cores of early Pliocene age (about 3 to 5 million years ago). The ratio of oxygen-18 to oxygen-16 in the early Pliocene at each site varies by an average of only ± 0.12 per mil (1 standard deviation). A plot of the oxygen isotopic ratio against modern bottom-water temperature is adequately fit by a line having a slope of - 0.26 per mil per degree Celsius (the equilibrium temperature dependence of calcite-water fractionation), suggesting that the temperature gradient of the Pacific Ocean during the early Pliocene was similar to that of today.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Insulin-like signaling regulates developmental arrest, stress resistance and lifespan in the nematode Caenorhabditis elegans. However, the genome encodes 40 insulin-like peptides, and the regulation and function of individual peptides is largely uncharacterized. We used the nCounter platform to measure mRNA expression of all 40 insulin-like peptides as well as the insulin-like receptor daf-2, its transcriptional effector daf-16, and the daf-16 target gene sod-3. We validated the platform using 53 RNA samples previously characterized by high density oligonucleotide microarray analysis. For this set of genes and the standard nCounter protocol, sensitivity and precision were comparable between the two platforms. We optimized conditions of the nCounter assay by varying the mass of total RNA used for hybridization, thereby increasing sensitivity up to 50-fold and reducing the median coefficient of variation as much as 4-fold. We used deletion mutants to demonstrate specificity of the assay, and we used optimized conditions to assay insulin-like gene expression throughout the C. elegans life cycle. We detected expression for nearly all insulin-like genes and find that they are expressed in a variety of distinct patterns suggesting complexity of regulation and specificity of function. We identified insulin-like genes that are specifically expressed during developmental arrest, larval development, adulthood and embryogenesis. These results demonstrate that the nCounter platform provides a powerful approach to analyzing insulin-like gene expression dynamics, and they suggest hypotheses about the function of individual insulin-like genes.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose. This study examined the usefulness of contextual cues in enhancing the accuracy of children's narrative accounts of an occurrence of a repeated event.

Method. Children aged 6 to 7 years took part in the same staged event four times whereby 16 target details varied in each occurrence (e.g. the colour of a cloak varied each time). Three days later, the children's free recall of the final occurrence was elicited. This occurrence was identified in one of two ways. Either it was identified via the temporal term 'last', or else the term 'last' was combined with a feature related to the environmental context or setting that was unique to the occurrence (i.e., the interviewer referred to a new object that was worn throughout the occurrence or a new person who carried out the event). For each condition, performance was compared to that of children who experienced the event only once.

Results. Children's memory of details specific to the target occurrence was better after the single than the repeated event. However for both event types, children who were given the contextual and temporal cue performed better than those who were given the temporal cue only. The benefit of using a contextual cue did not result in an increase in errors.

Conclusion. Contextual cues (generated by an interviewer) can facilitate children's recall of an occurrence of an event. However, further research needs to determine whether this finding would generalize to a more practical situation where the child (rather than the interviewer) generates the cues.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report d18O and minor element (Mg/Ca, Sr/Ca) data acquired by high-resolution, in situ secondary ion mass spectrometry (SIMS) from planktic foraminiferal shells and 100-500 µm sized diagenetic crystallites recovered from a deep-sea record (ODP Site 865) of the Paleocene-Eocene thermal maximum (PETM). The d18O of crystallites (~1.2 per mil Pee Dee Belemnite (PDB)) is ~4.8 per mil higher than that of planktic foraminiferal calcite (-3.6 per mil PDB), while crystallite Mg/Ca and Sr/Ca ratios are slightly higher and substantially lower than in planktic foraminiferal calcite, respectively. The focused stratigraphic distribution of the crystallites signals an association with PETM conditions; hence, we attribute their formation to early diagenesis initially sourced by seafloor dissolution (burndown) ensued by reprecipitation at higher carbonate saturation. The Mg/Ca ratios of the crystallites are an order of magnitude lower than those predicted by inorganic precipitation experiments, which may reflect a degree of inheritance from "donor" phases of biogenic calcite that underwent solution in the sediment column. In addition, SIMS d18O and electron microprobe Mg/Ca analyses that were taken within a planktic foraminiferal shell yield parallel increases along traverses that coincide with muricae blades on the chamber wall. The parallel d18O and Mg/Ca increases indicate a diagenetic origin for the blades, but their d18O value (-0.5 per mil PDB) is lower than that of crystallites suggesting that these two phases of diagenetic carbonate formed at different times. Finally, we posit that elevated levels of early diagenesis acted in concert with sediment mixing and carbonate dissolution to attenuate the d18O decrease signaling PETM warming in "whole-shell" records published for Site 865.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This cruise report is a summary of a field survey conducted along a portion of the U.S. continental shelf in northwestern Gulf of Mexico (GOM), at navigable depths along the coastline seaward to the shelf break (~100m) from about 89°30' W to 95°28' W longitude, August 8 – 16, 2011 on NOAA Ship Nancy Foster Cruise NF-11-07-RACOW. Synoptic sampling of multiple ecological indicators was conducted at each of 34 stations throughout these waters using a random probabilistic sampling design. The original study design consisted of 50 stations extending from the Mississippi delta all the way to the U.S./Mexican border, but vessel failures precluded sampling at 16 stations within the western-most portion of the study area. At each station samples were collected for the analysis of benthic community structure and composition; concentrations of chemical contaminants in sediments and target demersal biota; sediment toxicity; nutrient and chlorophyll levels in the water column; and other basic habitat characteristics such as salinity, temperature, dissolved oxygen, turbidity, pH, sediment grain size, and organic carbon content. Other indicators, from a human-dimension perspective, were also recorded, including presence of vessels, oil rigs, surface trash, visual oil sheens in sediments or water, marine mammals, or noxious/oily sediment odors. The overall purpose of the survey was to collect data to assess the status of ecosystem condition and potential stressor impacts throughout the region, based on these various indicators and corresponding management thresholds, and to provide this information as a baseline for determining how such conditions may be changing with time. While sample analysis is still ongoing, some preliminary results and observations are reported here. A final report will be completed once all data have been processed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

C-axis-orientated ZnO thin films were prepared on glass substrates by pulsed-laser deposition (PLD) technique in an oxygen-reactive atmosphere, using a metallic Zn target. The effects of growth condition such as laser energy and substrate temperature on the structural and optical properties of ZnO films had been investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission spectra and room-temperature (RT) photoluminescence (PL) measurements. The results showed that the thickness, crystallite size, and compactness of ZnO films increased with the laser energy and substrate temperature. Both the absorption edges and the UV emission peaks of the films exhibited redshift, and UV emission intensity gradually increased as the laser energy and substrate temperature increased. From these results, it was concluded that crystalline quality of ZnO films was improved with increasing laser energy and substrate temperature. (c) 2007 Elsevier B.N. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Metabolic stresses associated with disease, ageing, and exercise increase the levels of reactive oxygen species (ROS) in skeletal muscle. These ROS have been linked mechanistically to adaptations in skeletal muscle that can be favourable (i.e. in response to exercise) or detrimental (i.e. in response to disease). The magnitude, duration (acute versus chronic), and cellular origin of the ROS are important underlying factors in determining the metabolic perturbations associated with the ROS produced in skeletal muscle. In particular, insulin resistance has been linked to excess ROS production in skeletal muscle mitochondria. A chronic excess of mitochondrial ROS can impair normal insulin signalling pathways and glucose disposal in skeletal muscle. In contrast, ROS produced in skeletal muscle in response to exercise has been linked to beneficial metabolic adaptations including mitochondrial biogenesis and muscle hypertrophy. Moreover, unlike insulin resistance, exercise-induced ROS appears to be primarily of non-mitochondrial origin. The present review summarizes the diverse ROS-targeted metabolic outcomes associated with insulin resistance versus exercise in skeletal muscle, thus, presenting two contrasting perspectives of pathologically harmful versus physiologically beneficial ROS. Here, we discuss the key sites of ROS production during exercise and the effect of ROS in skeletal muscle of people with type 2 diabetes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] Peak aerobic power in humans (VO2,peak) is markedly affected by inspired O2 tension (FIO2). The question to be answered in this study is what factor plays a major role in the limitation of muscle peak VO2 in hypoxia: arterial O2 partial pressure (Pa,O2) or O2 content (Ca,O2)? Thus, cardiac output (dye dilution with Cardio-green), leg blood flow (thermodilution), intra-arterial blood pressure and femoral arterial-to-venous differences in blood gases were determined in nine lowlanders studied during incremental exercise using a large (two-legged cycle ergometer exercise: Bike) and a small (one-legged knee extension exercise: Knee)muscle mass in normoxia, acute hypoxia (AH) (FIO2 = 0.105) and after 9 weeks of residence at 5260 m (CH). Reducing the size of the active muscle mass blunted by 62% the effect of hypoxia on VO2,peak in AH and abolished completely the effect of hypoxia on VO2,peak after altitude acclimatization. Acclimatization improved Bike peak exercise Pa,O2 from 34 +/- 1 in AH to 45 +/- 1 mmHg in CH(P <0.05) and Knee Pa,O2 from 38 +/- 1 to 55 +/- 2 mmHg(P <0.05). Peak cardiac output and leg blood flow were reduced in hypoxia only during Bike. Acute hypoxia resulted in reduction of systemic O2 delivery (46 and 21%) and leg O2 delivery (47 and 26%) during Bike and Knee, respectively, almost matching the corresponding reduction in VO2,peak. Altitude acclimatization restored fully peak systemic and leg O(2) delivery in CH (2.69 +/- 0.27 and 1.28 +/- 0.11 l min(-1), respectively) to sea level values (2.65 +/- 0.15 and 1.16 +/- 0.11 l min(-1), respectively) during Knee, but not during Bike. During Knee in CH, leg oxygen delivery was similar to normoxia and, therefore, also VO2,peak in spite of a Pa,O2 of 55 mmHg. Reducing the size of the active mass improves pulmonary gas exchange during hypoxic exercise, attenuates the Bohr effect on oxygen uploading at the lungs and preserves sea level convective O2 transport to the active muscles. Thus, the altitude-acclimatized human has potentially a similar exercising capacity as at sea level when the exercise model allows for an adequate oxygen delivery (blood flow x Ca,O2), with only a minor role of Pa,O2 per se, when Pa,O2 is more than 55 mmHg.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

[EN] BACKGROUND: A classic, unresolved physiological question is whether central cardiorespiratory and/or local skeletal muscle circulatory factors limit maximal aerobic capacity (VO2max) in humans. Severe heat stress drastically reduces VO2max, but the mechanisms have never been studied. METHODS AND RESULTS: To determine the main contributing factor that limits VO2max with and without heat stress, we measured hemodynamics in 8 healthy males performing intense upright cycling exercise until exhaustion starting with either high or normal skin and core temperatures (+10 degrees C and +1 degrees C). Heat stress reduced VO2max, 2-legged VO2, and time to fatigue by 0.4+/-0.1 L/min (8%), 0.5+/-0.2 L/min (11%), and 2.2+/-0.4 minutes (28%), respectively (all P<0.05), despite heart rate and core temperature reaching similar peak values. However, before exhaustion in both heat stress and normal conditions, cardiac output, leg blood flow, mean arterial pressure, and systemic and leg O2 delivery declined significantly (all 5% to 11%, P<0.05), yet arterial O2 content and leg vascular conductance remained unchanged. Despite increasing leg O2 extraction, leg VO2 declined 5% to 6% before exhaustion in both heat stress and normal conditions, accompanied by enhanced muscle lactate accumulation and ATP and creatine phosphate hydrolysis. CONCLUSIONS: These results demonstrate that in trained humans, severe heat stress reduces VO2max by accelerating the declines in cardiac output and mean arterial pressure that lead to decrements in exercising muscle blood flow, O2 delivery, and O2 uptake. Furthermore, the impaired systemic and skeletal muscle aerobic capacity that precedes fatigue with or without heat stress is largely related to the failure of the heart to maintain cardiac output and O2 delivery to locomotive muscle.