991 resultados para OXIDE NANOWIRES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in nanowires of metal oxide oxides has been exponentially growing in the last years, due to the attracting potential of application in electronic, optical and sensor field. We have focused our attention on the sensing properties of semiconducting nanowires as conductometric and optical gas sensors. Single crystal tin dioxide nanostructures were synthesized to explore and study their capability in form of multi-nanowires sensors. The nanowires of SnO2 have been used to produce a novel gas sensor based on Pt/oxide/SiC structure and operating as Schottky diode. For the first time, a reactive oxide layer in this device has been replaced by SnO2 nanowires. Proposed sensor has maintained the advantageous properties of known SiC- based MOS devices, that can be employed for the monitoring of gases (hydrogen and hydrocarbons) emitted by industrial combustion processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phase-selective synthesis of copper oxide nanowires is warranted by several applications, yet it remains challenging because of the narrow windows of the suitable temperature and precursor gas composition in thermal processes. Here, we report on the room-temperature synthesis of small-diameter, large-area, uniform, and phase-pure Cu2O nanowires by exposing copper films to a custom-designed low-pressure, thermally non-equilibrium, high-density (typically, the electron number density is in the range of 10 11-1013cm-3) inductively coupled plasmas. The mechanism of the plasma-enabled phase selectivity is proposed. The gas sensors based on the synthesized Cu2O nanowires feature fast response and recovery for the low-temperature (∼140°C) detection of methane gas in comparison with polycrystalline Cu2O thin film-based gas sensors. Specifically, at a methane concentration of 4%, the response and the recovery times of the Cu2O nanowire-based gas sensors are 125 and 147s, respectively. The Cu2O nanowire-based gas sensors have a potential for applications in the environmental monitoring, chemical industry, mining industry, and several other emerging areas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The uniform growth of copper oxide nanowires on the top of copper plate has been investigated during the exposure to radiofrequency plasma discharge in respect to plasma properties and its localization. The copper samples of 10 mm radius and 1 mm in thickness were exposed to argon-oxygen plasma created at discharge power of 150 W. After 10 min, almost uniform growth of nanowires was achieved over large surface. There were significant distortions in nanowire length and shape near the edges. Based on the experimental results, we developed a theoretical model, which took into account a balance in heat released at the flow of the current to the nanowire and rejected from the nanowire. This model established a dependence of the maximal length of the nanowire at dependence on the plasma parameters, where the limiting factor for nanowire growth and distortions in distribution are ballistic effects of ions and their local fluxes. In contrast, the plasma heating by potential interactions of species has very little influence on the length and smaller deviations in flux are allowed for uniformity of growth

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In view of the important need to generate well-dispersed inorganic nanostructures in various solvents, we have explored the dispersion of nanostructures of metal oxides such as TiO2, Fe3O4 and ZnO in solvents of differing polarity in the presence of several surfactants. The solvents used are water, dimethylformamide (DMF) and toluene. The surfactant-solvent combinations yielding the best dispersions are reported alongwith some of the characteristics of the nanostructures in the dispersions. The surfactants which dispersed TiO2 nanowires in water were polyethylene oxide (PEO), Triton X-100 (TX-100), polyvinyl alcohol (PVA) and sodium bis(2-ethylhexyl) sulphosuccinate (AOT). TiO2 nanoparticles could also be dispersed with AOT and PEO in water, and with AOT in toluene. In DMF, PVA, PEO and TX-100 were found to be effective, while in toluene, only AOT gave good dispersions. Fe3O4 nanoparticles were held for long periods of time in water by PEO, AOT, PVA and polyethylene glycol (PEG), and by AOT in toluene. In the case of ZnO nanowires, the best surfactant-solvent combinations were found to be, PEO, sodium dodecyl sulphate (SIDS) and AOT in water and AOT, PEG, PVA, PEO and TX-100 in DMF In toluene, stable dispersions of ZnO nanowires were obtained with PEO. We have also been able to disperse oxide nanostructures in non-polar solvents by employing a hydrophobic silane coating on the surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tin oxide (SnO2) nanowires are synthesized by Au catalyzed chemical vapor deposition of Sn and C mixture at 900 degrees C by employing a continuous flow of Ar: O-2 (10:1) for an hour. X-ray diffraction and Raman spectroscopy studies indicate that the as-grown SnO2 nanowires are crystalline in nature with tetragonal rutile phase. Electron microscopy studies reveal towards high aspect ratio of nanowires. The field emission studies show that SnO2 nanowires grown on Si substrate exhibit low turn-on field of 1.75 V/mu m (at 0.1 mu A/cm(2)) and long-term emission stability over a period of more than 50 h with a current density of 4 mu A/cm(2) at a constant electric field of 2.25 V/mu m. Hardly any considerable degradation in the emission current is noticed even after 50 h which may be attributed to the high crystallinity of SnO2 nanowires. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent efforts towards the fabrication of touch sensing systems are presented, in which zinc oxide nanowire arrays are embedded in a polymer matrix to produce an engineered composite material. In the future, these sensor systems will be fully flexible and multi-touch as intended for Nokia's 'Morph' concept device.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A bottom-up technique for synthesizing transversely suspended zinc oxide nanowires (ZnO NWs) under a zinc nitrate (Zn(NO 3) 2· 6H 2O) and hexamethylenetetramine (HMTA, (CH 2) 6·N 4) solution within a microfabricated device is reported in this paper. The device consists of a microheater which is used to initially create an oxidized ZnO seed layer. ZnO NWs are then locally synthesized by the microheater and electrodes embedded within the devices are used to drive electric field directed horizontal alignment of the nanowires within the device. The entire process is carried out at low temperature. This approach has the potential to considerably simplify the fabrication and assembly of ZnO nanowires on CMOS compatible substrates, allowing for the chemical synthesis to be carried out under near-ambient conditions by locally defining the conditions for nanowire growth on a silicon reactor chip. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report a new method for large-scale production of GaMnN nanowires, by annealing manganese-gallium oxide nanowires in flowing ammonia at high temperature. Microstructure analysis indicates that the GaMnN nanowires have wurtzite GaN structure without Mn precipitates or Mn-related second phases. Magnetism evolution due to nitrogen doping in manganese-gallium oxide nanowires was evaluated by magnetic measurements. Magnetic measurement reveals that the magnetization increases with the increase of nitrogen concentration. Ferromagnetic ordering exists in the GaMnN nanowires, whose Curie temperature is above room temperature. Luminescence evolution was investigated by the cathodoluminesence measurement for a single nanowire and photoluminescence measurement in a temperature range between 10 and 300 K. Experimental results indicate that optical properties can be modulated by nitrogen doping in manganese-gallium oxide nanowires. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Manganese-gallium oxide nanowires were synthesized via in situ Mn doping during nanowire growth using a vapor phase evaporation method. The microstructure and composition of the products were characterized via transmission electron microscopy (TEM), field emission scanning electron microscopy (SEM), X-ray diffraction (XRD) and Raman spectroscopy. The field and temperature dependence of the magnetization reveal the obvious hysteresis loop and large magnitude of Curie-Weiss temperature. The photoluminescence of the manganese-gallium oxide nanowires were studied in a temperature range between 10 and 300 K. A broad green emission band was observed which is attributed to the T-4(1)-(6)A(1) transition in Mn2+ (3d(5)) ions. (c) 2005 Elsevier B.V. All rights reserved.