912 resultados para OVARY ACTIVATION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mating can affect female immunity in multiple ways. On the one hand, the immune system may be activated by pathogens transmitted during mating, sperm and seminal proteins, or wounds inflicted by males. On the other hand, immune defences may also be down-regulated to reallocate resources to reproduction. Ants are interesting models to study post-mating immune regulation because queens mate early in life, store sperm for many years, and use it until their death many years later, while males typically die after mating. This long-term commitment between queens and their mates limits the opportunity for sexual conflict but raises the new constraint of long-term sperm survival. In this study, we examine experimentally the effect of mating on immunity in wood ant queens. Specifically, we compared the phenoloxidase and antibacterial activities of mated and virgin Formica paralugubris queens. Queens had reduced levels of active phenoloxidase after mating, but elevated antibacterial activity 7 days after mating. These results indicate that the process of mating, dealation and ovary activation triggers dynamic patterns of immune regulation in ant queens that probably reflect functional responses to mating and pathogen exposure that are independent of sexual conflict.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Insects are able to combat infection by initiating an efficient immune response that involves synthesizing antimicrobial peptides and a range of other defense molecules. These responses may be costly to the organism, resulting in it exploiting endogenous resources to maintain homeostasis or support defense to the detriment of other physiological needs. We used queenless worker bees on distinct dietary regimes that may alter hemolymph protein storage and ovary activation to investigate the physiological costs of infection with Serratia marcescens. The expression of the genes encoding the storage proteins vitellogenin and hexamerin 70a, the vitellogenin receptor, and vasa (which has a putative role in reproduction), was impaired in the infected bees. This impairment was mainly evident in the bees fed beebread, which caused significantly higher expression of these genes than did royal jelly or syrup, and this was confirmed at the vitellogenin and hexamerin 70a protein levels. Beebread was also the only diet that promoted ovary activation in the queenless bees, but this activation was significantly impaired by the infection. The expression of the genes encoding the storage proteins apolipophorins-I and -III and the lipophorin receptor was not altered by infection regardless the diet provided to the bees. Similarly, the storage of apolipophorin-I in the hemolymph was only slightly impaired by the infection, independently of the supplied diet. Taken together these results indicate that, infection demands a physiological cost from the transcription of specific protein storage-related genes and from the reproductive capacity. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work was funded by the Medical ResearchCouncil (G1100357).We are grateful to Anne Saunderson, Joan Creiger and the staff of the Bruntsfield Suite, Royal Infirmary of Edinburgh, for their considerable assistance in patient recruitment. Funding to pay the Open Access publication charges for this article was provided by MRC grant G1100357.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous reports about the rat ovary have shown that cold stress promotes ovarian morphological alterations related to a polycystic ovary (PCO) condition through activation of the ovarian sympathetic nerves. Because the noradrenergic nucleus locus coeruleus (LC) is activated by cold stress and synaptically connected to the preganglionic cell bodies of the ovarian sympathetic pathway, this study aimed to evaluate the LC`s role in cold stress-induced PCO in rats. Ovarian morphology and endocrine and sympathetic functions were evaluated after 8 wk of chronic intermittent cold stress (4 C, 3 h/d) in rats with or without LC lesion. The effect of acute and chronic cold stress upon the LC neuron activity was confirmed by Fos protein expression in tyrosine hydroxylase-immunoreactive neurons. Cold stress induced the formation of follicular cysts, type III follicles, and follicles with hyperthecosis alongside increased plasma estradiol and testosterone levels, irregular estrous cyclicity, and reduced ovulation. Considering estradiol release in vitro, cold stress potentiated the ovarian response to human chorionic gonadotropin. Ovarian norepinephrine (NE) was not altered after 8 wk of stress. However, LC lesion reduced NE activity in the ovary of cold-stressed rats, but not in controls, and prevented all the cold stress effects evaluated. Cold stress increased the number of Fos/tyrosine hydroxylase-immunoreactive neurons in the LC, but this effect was more pronounced for acute stress as compared with chronic stress. These results show that cold stress promotes PCO in rats, which apparently depends on ovarian NE activity that, under this condition, is regulated by the noradrenergic nucleus LC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent data showing expression of activating NK receptors (NKR) by conventional T lymphocytes raise the question of their role in the triggering of TCR-independent responses that could be damaging for the host. Transgenic mice expressing the activating receptor Ly49D/DAP12 offer the opportunity to better understand the relevance of ITAM signaling in the biology of T cells. In vitro experiments showed that Ly49D engagement on T lymphocytes by a cognate MHC class I ligand expressed by Chinese hamster ovary (CHO) cells or by specific Ab triggered cellular activation of both CD4 and CD8 populations with modulation of activation markers and cytokine production. The forced expression of the ITAM signaling chain DAP12 is mandatory for Ly49D-transgenic T cell activation. In addition, Ly49D stimulation induced T lymphocyte proliferation, which was much stronger for CD8 T cells. Phenotypic analysis of anti-Ly49D-stimulated CD8 T cells and their ability to produce high levels of IFN-gamma and to kill target cells indicate that Ly49D ligation generates effector cytotoxic CD8 T cells. Ly49D engagement by itself also triggered cytotoxic activity of activated CD8 T cells. Adoptive transfer experiments confirmed that Ly49D-transgenic CD8 T cells are able to control growth of CHO tumor cells or RMA cells transfected with Hm1-C4, the Ly49D ligand normally expressed by CHO. In conclusion, Ly49D engagement on T cells leads to T cell activation and to a full range of TCR-independent effector functions of CD8 T cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In mammals it is well known that infections can lead to alterations in reproductive function. As part of the innate immune response, a number of cytokines and other immune factors is produced during bacterial infection or after treatment with lipopolysaccharide (LPS) and acts on the reproductive system. In fish, LPS can also induce an innate immune response but little is known about the activation of the immune system by LPS on reproduction in fish. Therefore, we conducted studies to examine the in vivo and in vitro effects of lipopolysaccharide (LPS) on the reproductive function of sexually mature female trout. METHODS: In saline- and LPS -injected brook trout, we measured the concentration of plasma steroids as well as the in vitro steroidogenic response (testosterone and 17alpha-hydroxyprogesterone) of ovarian follicles to luteinizing hormone (LH), the ability of 17alpha,20beta-dihydroxy-4-pregnen-3-one to induce germinal vesicle breakdown (GVBD) in vitro, and that of epinephrine to stimulate follicular contraction in vitro. We also examined the direct effects of LPS in vitro on steroid production, GVBD and contraction in brook trout ovarian follicles. The incidence of apoptosis was evaluated by TUNEL analysis. Furthermore, we examined the gene expression pattern in the ovary of saline- and LPS-injected rainbow trout by microarray analysis. RESULTS: LPS treatment in vivo did not affect plasma testosterone concentration or the basal in vitro production of steroids, although a small but significant potentiation of the effects of LH on testosterone production in vitro was observed in ovarian follicles from LPS-treated fish. In addition, LPS increased the plasma concentration of cortisol. LPS treatment in vitro did not affect the basal or LH-stimulated steroid production in brook trout ovarian follicles. In addition, we did not observe any effects of LPS in vivo or in vitro on GVBD or follicular contraction. Therefore, LPS did not appear to impair ovarian steroid production, oocyte final maturation or follicular contraction under the present experimental conditions. Interestingly, LPS administration in vivo induced apoptosis in follicular cells, an observation that correlated with changes in the expression of genes involved in apoptosis, as evidenced by microarray analysis. CONCLUSION: These results indicate that female trout are particularly resistant to an acute administration of LPS in terms of ovarian hormone responsiveness. However, LPS caused a marked increase in apoptosis in follicular cells, suggesting that the trout ovary could be sensitive to the pro-apoptotic effects of LPS-induced inflammatory cytokines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid modulation of ligand-binding affinity (“activation”) is a central property of the integrin family of cell adhesion receptors. The small GTP-binding protein Ras and its downstream effector kinase Raf-1 suppress integrin activation. In this study we explored the relationship between Ras and the closely related small GTP-binding protein R-Ras in modulating the integrin affinity state. We found that R-Ras does not seem to be a direct activator of integrins in Chinese hamster ovary cells. However, we observed that GTP-bound R-Ras strongly antagonizes the Ras/Raf-initiated integrin suppression pathway. Furthermore, this reversal of the Ras/Raf suppressor pathway does not seem to be via a competition between Ras and R-Ras for common downstream effectors or via an inhibition of Ras/Raf-induced MAP kinase activation. Thus, R-Ras and Ras may act in concert to regulate integrin affinity via the activation of distinct downstream effectors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Catecholamines, thought to derive from the extrinsic innervation of the ovary, participate in the regulation of ovarian development and mature gonadal function. Recently, intraovarian neurons containing tyrosine hydroxylase (TH), the rate-limiting enzyme in catecholamine biosynthesis, were described in the ovary of nonhuman primates. We now show that the primate ovary expresses both the genes encoding TH and dopamine β-hydroxylase (DBH), the key enzymes in norepinephrine (NE) biosynthesis. Ovarian neurons were identified as a site of TH and DBH gene expression, and surprisingly, oocytes were identified as an exclusive site of DBH synthesis. Oocytes contain neither TH mRNA nor protein, indicating that they are unable to synthesize dopamine (DA). They did, however, express a DA transporter gene identical to that found in human brain. The physiological relevance of this transporter system and DBH in oocytes was indicated by the ability of isolated oocytes to metabolize exogenous DA into NE. Isolated follicles containing oocytes—but not those from which the oocytes had been removed—responded to DA with an elevation in cAMP levels; this elevation was prevented by propranolol, a β-adrenoreceptor antagonist. The results suggest that oocytes and somatic cells are linked by a neuroendocrine loop consisting of NE synthesized in oocytes from actively transported DA and cAMP produced by somatic follicular cells in response to NE-induced β-adrenoreceptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ligands that bind to the allosteric-binding sites on muscarinic acetylcholine receptors alter the conformation of the classical-binding sites of these receptors and either diminish or increase their affinity for muscarinic agonists and classical antagonists. It is not known whether the resulting conformational change also affects the interaction between the receptors and the G proteins. We have now found that the muscarinic receptor allosteric modulators alcuronium, gallamine, and strychnine (acting in the absence of an agonist) alter the synthesis of cAMP in Chinese hamster ovary (CHO) cells expressing the M2 or the M4 subtype of muscarinic receptors in the same direction as the agonist carbachol. In addition, most of their effects on the production of inositol phosphates in CHO cells expressing the M1 or the M3 muscarinic receptor subtypes are also similar to (although much weaker than) those of carbachol. The agonist-like effects of the allosteric modulators are not observed in CHO cells that have not been transfected with the gene for any of the subtypes of muscarinic receptors. The effects of alcuronium on the formation of cAMP and inositol phosphates are not prevented by the classical muscarinic antagonist quinuclidinyl benzilate. These observations demonstrate for the first time that the G protein-mediated functional responses of muscarinic receptors can be evoked not only from their classical, but also from their allosteric, binding sites. This represents a new mechanism of receptor activation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Interleukin 2 (IL-2)-deficient (IL-2-/-) mice develop hemolytic anemia and chronic inflammatory bowel disease. Importantly, the induction of disease in IL-2-deficient mice is critically dependent on CD4+ T cells. We have studied the requirements of T cells from IL-2-deficient mice for costimulation with B7 antigens. Stable B7-1 or B7-2 chinese hamster ovary (CHO) cell transfectants could synergize with anti-CD3 monoclonal antibody (mAb) to induce the proliferation of CD4+ T cells from IL-2-/- mutant mice. Further mechanistic studies established that B7-induced activation resulted in surface expression of the alpha chain of the IL-2 receptor. B7-induced proliferation occurred independently of IL-4 and was largely independent of the common gamma chain of the IL-2, IL-4, IL-7, IL-9, and IL-15 receptors. Finally, anti-B7-2 but not anti-B7-1 mAb was able to inhibit the activation of IL-2-/- T cells induced by anti-CD3 mAb in the presence of syngeneic antigen-presenting cells. The results of our experiments indicate that IL-2-/- CD4+ T cells remain responsive to B7 stimulation and raise the possibility that B7 antagonists have a role in the prevention/treatment of inflammatory bowel disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purified NADPH:cytochrome c (P-450) reductase (FpT; NADPH-ferrihemoprotein oxidoreductase, EC 1.6.2.4) can reductively activate mitomycin antibiotics through a one-electron reduction to species that alkylate DNA. To assess the involvement of FpT in the intracellular activation of the mitomycins, transfectants overexpressing a human FpT cDNA were established from a Chinese hamster ovary cell line deficient in dihydrofolate reductase (CHO-K1/dhfr-). The parental cell line was equisensitive to the cytotoxic action of mitomycin C under oxygenated and hypoxic conditions. In contrast, porfiromycin was considerably less cytotoxic to wild-type parental cells than was mitomycin C in air and markedly more cytotoxic under hypoxia. Two FpT-transfected clones were selected that expressed 19- and 27-fold more FpT activity than the parental line. Levels of other oxidoreductases implicated in the activation of the mitomycins were unchanged. Significant increases in sensitivity to mitomycin C and porfiromycin in the two FpT-transfected clones were seen under both oxygenated and hypoxic conditions, with the increases in toxicity being greater under hypoxia than in air. These findings demonstrate that FpT can bioreductively activate the mitomycins in living cells and implicate FpT in the differential aerobic/hypoxic toxicity of the mitomycins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellular desensitization is believed to be important for growth control but direct evidence is lacking. In the current study we compared effects of wild-type and down-regulation-resistant mutant m3 muscarinic receptors on Chinese hamster ovary (CHO-K1) cell desensitization, proliferation, and transformation. We found that down-regulation of m3 muscarinic acetylcholine receptors was the principal mechanism of desensitization of receptor-activated inositol phosphate phospholipid hydrolysis in these cells. Activation of wild-type and mutant receptors inhibited anchorage-independent growth as assayed by colony formation in agar. However, the potency for inhibition of anchorage-independent growth was greater for cells expressing the mutant receptor. Activation of either receptor also initially inhibited anchorage-dependent cell proliferation in randomly growing populations. Rates of DNA synthesis and cell division were profoundly reduced by carbachol in cells expressing either receptor at early time points. Analysis of cell cycle parameters indicated that cell cycle progression was inhibited at transitions from G1 to S and G2/M to G1 phases. However, mutant receptor effects on anchorage-dependent growth were sustained, whereas wild-type receptor effects were transient. Thus, receptor down-regulation restored cell cycle progression. In contrast, activation of either receptor blocked entry into the cell cycle from quiescence, and this response was not reduced by receptor down-regulation. Therefore, activation of m3 muscarinic acetylcholine receptors inhibited CHO cell anchorage-dependent and -independent growth. In anchored cells carbachol inhibited the cell cycle at three distinct points. Inhibitions at two of these points were eliminated by wild-type receptor down-regulation while the other was not. These results directly demonstrate that desensitization mechanisms can act as principal determinants of cellular growth responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phospholipases A2 (PLA2) are key enzymes for production of lipid mediators. We previously demonstrated that a snake venom sPLA2 named MT-III leads to prostaglandin (PG)E2 biosynthesis in macrophages by inducing the expression of cyclooxygenase-2 (COX-2). Herein, we explored the molecular mechanisms and signaling pathways leading to these MT-III-induced effects. Results demonstrated that MT-III induced activation of the transcription factor NF-κB in isolated macrophages. By using NF-κB selective inhibitors, the involvement of this factor in MT-III-induced COX-2 expression and PGE2 production was demonstrated. Moreover, MT-III-induced COX-2 protein expression and PGE2 release were attenuated by pretreatment of macrophages with SB202190, and Ly294002, and H-7-dihydro compounds, indicating the involvement of p38MAPK, PI3K, and PKC pathways, respectively. Consistent with this, MT-III triggered early phosphorylation of p38MAPK, PI3K, and PKC. Furthermore, SB202190, H-7-dihydro, but not Ly294002 treatment, abrogated activation of NF-κB induced by MT-III. Altogether, these results show for the first time that the induction of COX-2 protein expression and PGE2 release, which occur via NF-κB activation induced by the sPLA2-MT-III in macrophages, are modulated by p38MAPK and PKC, but not by PI3K signaling proteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed at evaluating the functional activation and activating receptors expression on resting, short- and long-term NK and NK-like T cells from blood of ovarian neoplasia patients. Blood from patients with adnexal benign alterations (n = 10) and ovarian cancer (grade I-IV n = 14) were collected after signed consent. Effector cells activation was evaluated by the expression of the CD107a molecule. Short-term culture was conducted overnight with IL-2 and long-term culture for 21 days, by a method designed to expand CD56(+) lymphocytes. Short-term culture significantly increased NK cells activation compared to resting NK cells (p<0.05), however, the long-term procedure supported an even higher increase (p<0.001). Resting NK-like T cells showed poor activation, which was not altered by the culture procedures. The long-term culture effectively increased the expression of the activating receptors on NK and NK-like T cells, either by increasing the number of cells expressing a given receptor and/or by up-regulating their expression intensity. As a conclusion, the long-term culture system employed, resulted in a high number of functional NK cells. The culture system was particularly efficient on the up-regulation of NKp30 and DNAM-1 receptors on NK cells.