100 resultados para OSMOLARITY


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Schizosaccharomyces pombe win1-1 mutant has a defect in the G2-M transition of the cell cycle. Although the defect is suppressed by wis1+ and wis4+, which are components of a stress-activated MAP kinase pathway that links stress response and cell cycle control, the molecular identity of Win1 has not been known. We show here that win1+ encodes a polypeptide of 1436 residues with an apparent molecular size of 180 kDa and demonstrate that Win1 is a MAP kinase kinase kinase that phosphorylates and activates Wis1. Despite extensive similarities between Win1 and Wis4, the two MAP kinase kinase kinases have distinct functions. Wis4 is able to compensate for loss of Win1 only under unstressed conditions to maintain basal Wis1 activity, but it fails to suppress the osmosignaling defect conferred by win1 mutations. The win1-1 mutation is a spontaneous duplication of 16 nucleotides, which leads to a frameshift and production of a truncated protein lacking the kinase domain. We discuss the cell cycle phenotype of the win1-1 cdc25-22 wee1-50 mutant and its suppression by wis genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rck2, a yeast Ser/Thr protein kinase homologous to mammalian calmodulin kinases, requires phosphorylation for activation. We provide evidence that in budding yeast, this step can be executed by the osmostress-activated mitogen-activated protein kinase Hog1. Rck2 phosphorylation was transiently increased during osmostress or in mutants with a hyperactive high osmolarity glycerol (HOG) pathway. This modification depended on catalytically active Hog1 kinase and two putative mitogen-activated protein kinase phosphorylation sites in Rck2. Immunokinase assays showed that Hog1 can directly phosphorylate Rck2 to stimulate its enzymatic activity toward translation elongation factor 2. We demonstrate that Hog1 and Rck2 are necessary for attenuation of protein synthesis in response to osmotic challenge and show that modification of elongation factor 2 induced by osmostress depends on Rck2 and Hog1 in vivo. Therefore, we propose that the transient down-regulation of protein synthesis after osmotic shock is a response not to damage but to an extracellular signal mediated by Hog1 and Rck2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose The present study aimed to review the effect of dehydration during Ramadan fasting on the health and ocular parameters leading to changes in eye function. Methods Articles included in the study were taken from PubMed, Ovid, Web of Science and Google Scholar up to 2014. Related articles were also obtained from scientific journals on fasting and vision system. Results Dehydration and nutrition changes in Ramadan cause an increase in tear osmolarity, ocular aberration, anterior chamber depth, IOL measurement, central corneal thickness, retinal and choroidal thicknesses, and also a decrease in IOP, tear secretion, and vitreous thickness. Conclusion Much research related to the effect of dehydration on ocular parameters during Ramadan fasting exists. The findings reveal association with significant changes on ocular parameters. Thus, it seems requisite to have a comprehensive study on "fasting and ocular parameters”, which will be helpful in making decisions and giving plan to the patients.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department with a chief complaint of diarrhoeal disease were questioned regarding their preference of glucose-based vs rice-based oral rehydration solution (ORS) in order to determine the acceptability of a rice-based ORS. Of the 93 guardians interviewed, greater than 60% preferred the glucose-based solution in its mixability, appearance and taste, and 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution. In a country where diarrhoeal disease is a leading cause of child death and guardians are the primary health care providers, the acceptability of an ORS is critical to the morbidity and mortality of Papua New Guinea's children. Killing an estimated 2.9 million children annually, diarrheal disease is the second leading cause of child mortality worldwide. Diarrheal disease is also the second leading cause of child mortality in Papua New Guinea (PNG), killing an average 193 inpatient children per year over the period 1984-90. However, despite the high level of diarrhea-related mortality and the proven efficacy of oral rehydration therapy (ORT) in managing diarrhea-related dehydration, standardized ORT has been underutilized in PNG. The current glucose-based oral rehydration solution (ORS) does not reduce the frequency or volume of a child's diarrhea, the most immediate concern of caregivers during episodes of illness. Cereal-based ORS, made from cereals which are commonly available as food staples in most countries, better address the short-term concerns of caregivers while offering a superior nutritional profile. A sample of guardians of children brought to the Port Moresby General Hospital's Children's Outpatient Department complaining of child diarrhea were asked about their preferences on glucose-based versus rice-based ORS in order to determine the acceptability of a rice-based ORS. More than 60% of the 93 guardians interviewed preferred the glucose-based solution for its mixability, appearance, and taste. 65% initially reported that their children preferred the taste of the glucose solution. However, after a 30-minute trial, only 58% of children still preferred the glucose solution.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background Corneal oedema is a common post-operative problem that delays or prevents visual recovery from ocular surgery. Honey is a supersaturated solution of sugars with an acidic pH, high osmolarity and low water content. These characteristics inhibit the growth of micro-organisms, reduce oedema and promote epithelialisation. This clinical case series describes the use of a regulatory approved Leptospermum species honey ophthalmic product, in the management of post-operative corneal oedema and bullous keratopathy. Methods A retrospective review of 18 consecutive cases (30 eyes) with corneal oedema persisting beyond one month after single or multiple ocular surgical procedures (phacoemulsification cataract surgery and additional procedures) treated with Optimel Antibacterial Manuka Eye Drops twice to three times daily as an adjunctive therapy to conventional topical management with corticosteroid, aqueous suppressants, hypertonic sodium chloride five per cent, eyelid hygiene and artificial tears. Visual acuity and central corneal thickness were measured before and at the conclusion of Optimel treatment. Results A temporary reduction in corneal epithelial oedema lasting up to several hours was observed after the initial Optimel instillation and was associated with a reduction in central corneal thickness, resolution of epithelial microcysts, collapse of epithelial bullae, improved corneal clarity, improved visualisation of the intraocular structures and improved visual acuity. Additionally, with chronic use, reduction in punctate epitheliopathy, reduction in central corneal thickness and improvement in visual acuity were achieved. Temporary stinging after Optimel instillation was experienced. No adverse infectious or inflammatory events occurred during treatment with Optimel. Conclusions Optimel was a safe and effective adjunctive therapeutic strategy in the management of persistent post-operative corneal oedema and warrants further investigation in clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tol-pal genes are essential for maintaining the outer membrane integrity and detergent resistance in various Gram-negative bacteria, including Salmonella. The role of TolA has been well established for the bile resistance of Salmonella enterica subsp. enterica serovar Typhimurium. We compared the bile resistance pattern between the S. enterica serovars Typhi and Typhimurium and observed that Typhi is more resistant to bile-mediated damage. A closer look revealed a significant difference in the TolA sequence between the two serovars which contributes to the differential detergent resistance. The tolA knockout of both the serovars behaves completely differently in terms of membrane organization and morphology. The role of the Pal proteins and difference in LPS organization between the two serovars were verified and were found to have no direct connection with the altered bile resistance. In normal Luria broth (LB), S. Typhi Delta tolA is filamentous while S. Typhimurium Delta tolA grows as single cells, similar to the wildtype. In low osmolarity LB, however, S. Typhimurium Delta tolA started chaining and S. Typhi Delta tolA showed no growth. Further investigation revealed that the chaining phenomenon observed was the result of failure of the outer membrane to separate in the dividing cells. Taken together, the results substantiate the evolution of a shorter TolA in S. Typhi to counteract high bile concentrations, at the cost of lower osmotic tolerance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Escherichia coli is one of the best studied living organisms and a model system for many biophysical investigations. Despite countless discoveries of the details of its physiology, we still lack a holistic understanding of how these bacteria react to changes in their environment. One of the most important examples is their response to osmotic shock. One of the mechanistic elements protecting cell integrity upon exposure to sudden changes of osmolarity is the presence of mechanosensitive channels in the cell membrane. These channels are believed to act as tension release valves protecting the inner membrane from rupturing. This thesis presents an experimental study of various aspects of mechanosensation in bacteria. We examine cell survival after osmotic shock and how the number of MscL (Mechanosensitive channel of Large conductance) channels expressed in a cell influences its physiology. We developed an assay that allows real-time monitoring of the rate of the osmotic challenge and direct observation of cell morphology during and after the exposure to osmolarity change. The work described in this thesis introduces tools that can be used to quantitatively determine at the single-cell level the number of expressed proteins (in this case MscL channels) as a function of, e.g., growth conditions. The improvement in our quantitative description of mechanosensation in bacteria allows us to address many, so far unsolved, problems, like the minimal number of channels needed for survival, and can begin to paint a clearer picture of why there are so many distinct types of mechanosensitive channels.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the supposed effects of the observed ozone depletion is the increase of solar UV-B irradiation at the seasurface. This will cause an impact on certain compartments of marine ecosystems. Especially, sensitive developmental stages of pelagic fish embryos might be affected. Embryos of dab (Limanda limanda) and plaice (Pleuronectes plalessa) were experimentally exposed 10 different amounts of UVB irradiation in a sunshine simulator. This programmable device allows the dosage of realistic solar irradiation in quality and guantity. Experiments were carried out in March 1995 and February 1996. Either artificially inserninated and reared emhryos of dab and plaice or embryos caught in the German Bight were exposed to simulated solar irradiation. The 1995 experiments served to identify the effective irradiation dosages. For the 1996 experiments irradiation applied was much lower, being dose to realistic valucs expected over the North Sea as a consequence of ozone depletion. The following end points were studied: 1. Mortality, 2. sublethal morphological effects (malformations), 3. DNA damage, 4. changes in buoyancy of embryos measured as changes in osmolarity of the perivitelline fluid. Conditions for the simulation of daylight were a c1oudless sky with a solar zenith distance of 34 % (air mass 1.2). The adopted ozone depletion was 40 % corresponding to 180 DU (Dobson Units) instead of 300 DU. In the 1995 experiments time and dosage dependent influenccs on mortality and buoyancy of embryos of dab and plaice were found. Even in those embryos which were protected from the UV-B spectral range a loss of buoyancy was registered after 12 hours in the simulator. No diffcrences in DNA integrity as determined by DNA unwinding of exposed and control embryos were found. Also with lower amounts of irradiation in the 1996 experiments dosage dependent acute mortality, malformations, and impact on the buoyancy of the emhryos was registered. Sublethal effects occurred as well in embryos protected against UV-B in the exposure chambers, but were not found in the dark controls. The impact of low dosages of UV-B on the buoyancy of pelagic fish embryos might indicate an important ecological threat and deserves further studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Four neutral gadolinium complexes of diethylenetriaminepentaacetic acid (DTPA)-bisamide derivatives have been synthesized and characterized. Their potential application as tissue-specific and low-osmolarity MRI contrast agents has been evaluated by in vitro and in vivo experiments. Their measured relaxivities in D2O, bovine serum albumin and human serum transferrin solutions showed favorable relaxation ability. In vivo studies have proven that Gd(DTPA-BDMA), Gd(DTPA-BIN), and Gd(cyclic-DTPA-1,2-pn) could be promising liver-specific MRI contrast agents and Gd(DTPA-BDMA), and Gd(cyclic-DTPA-1,2-pn) have favorable renal excretion capability. Among them, Gd(cyclic-DTPA-1,2-pn) is a more powerful hepatic contrast agent and Gd(DTPA-BIN) provides the stable imaging contrast for several hours. They also show a lower toxicity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability of the Gram-positive foodborne pathogen Listeria monocytogenes to survive and grow in environments of elevated osmolarity can be attributed, at least in part, to the accumulation of a restricted range of low molecular mass solutes compatible with cellular function. Accumulated to high internal concentrations in hyper-saline environments, compatible solutes, either transported into the cell or synthesized de novo, play a dual role: helping to stabilize protein structure and function while also counterbalancing external osmotic strength, thus preventing water loss from the cell and plasmolysis. While previous physiological investigations identified glycine betaine, carnitine, and proline as the principal compatible solutes in the listerial osmostress response, genetic alanysis of the uptake/synthesis systems governing the accumulation of these compounds has, until now, remained largely unexplored. Representing the first genetic analysis of compatible solute accumulation in L. monocytogenes, this thesis describes the molecular characterization of BetL; a highly specific secondary glycine betaine transport system, OpuC; a multicomponent carnitine/glycine betaine transporter, and finally proBA; a two-gene operon encoding the first two enzymes of the listerial proline piosynthesis pathway. In addition to their role in osmotolerance, the potential of each system in contributing to listerial pathogenesis was investigated. While mutations in each gene cluster exhibited dramatic reductions in listerial osmotolerance, OpuC- mutants were additionally shown to exhibit reduced virulence when admisistered via the oral route. This represents the first direct link between the salt stress response and virulence in L. monocytogenes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The ability to adapt to and respond to increases in external osmolarity is an important characteristic that enables bacteria to survive and proliferate in different environmental niches. When challenged with increased osmolarity, due to sodium chloride (NaCl) for example, bacteria elicit a phased response; firstly via uptake of potassium (K+), which is known as the primary response. This primary response is followed by the secondary response which is characterised by the synthesis or uptake of compatible solutes (osmoprotectants). The overall osmotic stress response is much broader however, involving many diverse cellular systems and processes. These ancillary mechanisms are arguably more interesting and give a more complete view of the osmotic stress response. The aim of this thesis was to identify novel genetic loci from the human gut microbiota that confer increased tolerance to osmotic stress using a functional metagenomic approach. Functional metagenomics is a powerful tool that enables the identification of novel genes from as yet uncultured bacteria from diverse environments through cloning, heterologous expression and phenotypic identification of a desired trait. Functional metagenomics does not rely on any previous sequence information to known genes and can therefore enable the discovery of completely novel genes and assign functions to new or known genes. Using a functional metagenomic approach, we have assigned a novel function to previously annotated genes; murB, mazG and galE, as well as a putative brp/blh family beta-carotene 15,15’-monooxygenase. Finally, we report the identification of a completely novel salt tolerance determinant with no current known homologues in the databases. Overall the genes identified originate from diverse taxonomic and phylogenetic groups commonly found in the human gastrointestinal (GI) tract, such as Collinsella and Eggerthella, Akkermansia and Bacteroides from the phyla Actinobacteria, Verrucomicrobia and Bacteroidetes, respectively. In addition, a number of the genes appear to have been acquired via lateral gene transfer and/or encoded on a prophage. To our knowledge, this thesis represents the first investigation to identify novel genes from the human gut microbiota involved in the bacterial osmotic stress response.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rachid S, Ohlsen K, Witte W, Hacker J, Ziebuhr W. Institut für Molekulare Infektionsbiologie, Röntgenring 11, D-97070 Würzburg, Germany. Biofilm production is an important step in the pathogenesis of Staphylococcus epidermidis polymer-associated infections and depends on the expression of the icaADBC operon leading to the synthesis of a polysaccharide intercellular adhesin. A chromosomally encoded reporter gene fusion between the ica promoter and the beta-galactosidase gene lacZ from Escherichia coli was constructed and used to investigate the influence of both environmental factors and subinhibitory concentrations of different antibiotics on ica expression in S. epidermidis. It was shown that S. epidermidis biofilm formation is induced by external stress (i.e., high temperature and osmolarity). Subinhibitory concentrations of tetracycline and the semisynthetic streptogramin antibiotic quinupristin-dalfopristin were found to enhance ica expression 9- to 11-fold, whereas penicillin, oxacillin, chloramphenicol, clindamycin, gentamicin, ofloxacin, vancomycin, and teicoplanin had no effect on ica expression. A weak (i.e., 2.5-fold) induction of ica expression was observed for subinhibitory concentrations of erythromycin. The results were confirmed by Northern blot analyses of ica transcription and quantitative analyses of biofilm formation in a colorimetric assay.