928 resultados para ORGAN DYSFUNCTION SYSTEM
Resumo:
Background
Organ dysfunction consequent to infection (‘severe sepsis’) is the leading cause of admission to an intensive care unit (ICU). In both animal models and early clinical studies the calcium channel sensitizer levosimendan has been demonstrated to have potentially beneficial effects on organ function. The aims of the Levosimendan for the Prevention of Acute oRgan Dysfunction in Sepsis (LeoPARDS) trial are to identify whether a 24-hour infusion of levosimendan will improve organ dysfunction in adults who have septic shock and to establish the safety profile of levosimendan in this group of patients.
Methods/DesignThis is a multicenter, randomized, double-blind, parallel group, placebo-controlled trial. Adults fulfilling the criteria for systemic inflammatory response syndrome due to infection, and requiring vasopressor therapy, will be eligible for inclusion in the trial. Within 24 hours of meeting these inclusion criteria, patients will be randomized in a 1:1 ratio stratified by the ICU to receive either levosimendan (0.05 to 0.2 μg.kg-1.min-1 or placebo for 24 hours in addition to standard care. The primary outcome measure is the mean Sequential Organ Failure Assessment (SOFA) score while in the ICU. Secondary outcomes include: central venous oxygen saturations and cardiac output; incidence and severity of renal failure using the Acute Kidney Injury Network criteria; duration of renal replacement therapy; serum bilirubin; time to liberation from mechanical ventilation; 28-day, hospital, 3 and 6 month survival; ICU and hospital length-of-stay; and days free from catecholamine therapy. Blood and urine samples will be collected on the day of inclusion, at 24 hours, and on days 4 and 6 post-inclusion for investigation of the mechanisms by which levosimendan might improve organ function. Eighty patients will have additional blood samples taken to measure levels of levosimendan and its active metabolites OR-1896 and OR-1855. A total of 516 patients will be recruited from approximately 25 ICUs in the United Kingdom.
DiscussionThis trial will test the efficacy of levosimendan to reduce acute organ dysfunction in adult patients who have septic shock and evaluate its biological mechanisms of action.
Resumo:
Background: Despite advances in supportive care, sepsis-related mortality remains high, especially in patients with acute kidney injury (AKI). Erythropoietin can protect organs against ischemia and sepsis. This effect has been linked to activation of intracellular survival pathways, although the mechanism remains unclear. Continuous erythropoietin receptor activator (CERA) is an erythropoietin with a unique pharmacologic profile and long half-life. We hypothesized that pretreatment with CERA would be renoprotective in the cecal ligation and puncture (CLP) model of sepsis-induced AKI. Methods: Rats were randomized into three groups: control; CLP; and CLP+CERA (5 mu g/kg body weight, i.p. administered 24 h before CLP). At 24 hours after CLP, we measured creatinine clearance, biochemical variables, and hemodynamic parameters. In kidney tissue, we performed immunoblotting-to quantify expression of the Na-K-2Cl cotransporter (NKCC2), aquaporin 2 (AQP2), Toll-like receptor 4 (TLR4), erythropoietin receptor (EpoR), and nuclear factor kappa B (NF-kappa B)-and immunohistochemical staining for CD68 (macrophage infiltration). Plasma interleukin (IL)-2, IL-1 beta, IL-6, IL-10, interferon gamma, and tumor necrosis factor alpha were measured by multiplex detection. Results: Pretreatment with CERA preserved creatinine clearance and tubular function, as well as the expression of NKCC2 and AQP2. In addition, CERA maintained plasma lactate at normal levels, as well as preserving plasma levels of transaminases and lactate dehydrogenase. Renal expression of TLR4 and NF-kappa B was lower in CLP+CERA rats than in CLP rats (p<0.05 and p<0.01, respectively), as were CD68-positive cell counts (p<0.01), whereas renal EpoR expression was higher (p<0.05). Plasma levels of all measured cytokines were lower in CLP+CERA rats than in CLP rats. Conclusion: CERA protects against sepsis-induced AKI. This protective effect is, in part, attributable to suppression of the inflammatory response.
Resumo:
Homing of human bone marrow-derived mesenchymal stem cells (BMSCs) was studied using ex vivo cultured bovine caudal intervertebral discs (IVDs).
Resumo:
The aim of this study was to evaluate microdialysis of the rectus abdominis muscle (RAM) for early detection of subclinical organ dysfunction in a porcine model of critical intra-abdominal hypertension (IAH). Microdialysis catheters for analyses of lactate, pyruvate, and glycerol levels were placed in cervical muscles (control), gastric and jejunal wall, liver, kidney, and RAM of 30 anesthetized mechanically ventilated pigs. Catheters for venous lactate and interleukin 6 samples were placed in the jugular, portal, and femoral vein. Intra-abdominal pressure (IAP) was increased to 20 mmHg (IAH20 group, n = 10) and 30 mmHg (IAH30, n = 10) for 6 h by controlled CO2 insufflation, whereas sham animals (n = 10) exhibited a physiological IAP. In contrast to 20 mmHg, an IAH of 30 mmHg induced pathophysiological alterations consistent with an abdominal compartment syndrome. Microdialysis showed significant increase in the lactate/pyruvate ratio in the RAM of the IAH20 group after 6 h. In the IAH30 group, the strongest increase in lactate/pyruvate ratio was detected in the RAM and less pronounced in the liver and gastric wall. Glycerol increased in the RAM only. After 6 h, there was a significant increase in venous interleukin 6 of the IAH30 group compared with baseline. Venous lactate was increased compared with baseline and shams in the femoral vein of the IAH30 group only. Intra-abdominal pressure-induced ischemic metabolic changes are detected more rapidly and pronounced by microdialysis of the RAM when compared with intra-abdominal organs. Thus, the RAM represents an important and easily accessible site for the early detection of subclinical organ dysfunction during critical IAH.
Resumo:
We evaluated the score for disseminated intravascular coagulation (DIC) recently published by the International Society for Thrombosis and Haemostasis (ISTH) in a well-defined series of sepsis patients. Thirty-two patients suffering from severe sepsis and eight patients with septic shock were evaluated following the ISTH DIC score. Fibrin monomer and D-dimer were chosen as fibrin-related markers (FRM), respectively. DIC scores for nonsurvivors (n = 13) as well as for septic shock patients were higher (P < 0.04) compared with survivors and patients with severe sepsis, respectively. Using fibrin monomer and D-dimer, 30 and 25% of patients suffered from overt DIC. Overt DIC was associated with significantly elevated thrombin-antithrombin complexes and plasminogen activator inhibitor type-1 levels as well as with significantly lower factor VII clotting activity. Patients with overt DIC had a significantly higher risk of death and of developing septic shock. Since more than 95% of the sepsis patients had elevated FRM, the DIC score was strongly dependent on prolongation of the prothrombin time and platelet counts. The ISTH DIC score is useful to identify patients with coagulation activation, predicting fatality and disease severity. It mainly depends on the prolongation of the prothrombin time and platelet counts.
Resumo:
OBJECTIVE: To determine if neurally adjusted ventilatory assist (NAVA) that delivers pressure in proportion to diaphragm electrical activity is as protective to acutely injured lungs (ALI) and non-pulmonary organs as volume controlled (VC), low tidal volume (Vt), high positive end-expiratory pressure (PEEP) ventilation. DESIGN: Prospective, randomized, laboratory animal study. SUBJECTS: Twenty-seven male New Zealand white rabbits. INTERVENTIONS: Anesthetized rabbits with hydrochloric acid-induced ALI were randomized (n = 9 per group) to 5.5 h NAVA (non-paralyzed), VC (paralyzed; Vt 6-ml/kg), or VC (paralyzed; Vt 15-ml/kg). PEEP was adjusted to hemodynamic goals in NAVA and VC6-ml/kg, and was 1 cmH2O in VC15-ml/kg. MEASUREMENTS AND MAIN RESULTS: PaO2/FiO2; lung wet-to-dry ratio; lung histology; interleukin-8 (IL-8) concentrations in broncho-alveolar-lavage (BAL) fluid, plasma, and non-pulmonary organs; plasminogen activator inhibitor type-1 and tissue factor in BAL fluid and plasma; non-pulmonary organ apoptosis rate; creatinine clearance; echocardiography. PEEP was similar in NAVA and VC6-ml/kg. During NAVA, Vt was lower (3.1 +/- 0.9 ml/kg), whereas PaO2/ FiO2, respiratory rate, and PaCO2 were higher compared to VC6-ml/kg (p<0.05 for all). Variables assessing ventilator-induced lung injury (VILI), IL-8 levels, non-pulmonary organ apoptosis rate, and kidney as well as cardiac performance were similar in NAVA compared to VC6-ml/kg. VILI and non-pulmonary organ dysfunction was attenuated in both groups compared to VC15-ml/kg. CONCLUSIONS: In anesthetized rabbits with early experimental ALI, NAVA is as effective as VC6-ml/kg in preventing VILI, in attenuating excessive systemic and remote organ inflammation, and in preserving cardiac and kidney function.
Resumo:
Intervertebral disc (IVD) cell therapy with unconditioned 2D expanded mesenchymal stem cells (MSC) is a promising concept yet challenging to realize. Differentiation of MSCs by nonviral gene delivery of growth and differentiation factor 5 (GDF5) by electroporation mediated gene transfer could be an excellent source for cell transplantation. Human MSCs were harvested from bone marrow aspirate and GDF5 gene transfer was achieved by in vitro electroporation. Transfected cells were cultured as monolayers and as 3D cultures in 1.2% alginate bead culture. MSC expressed GDF5 efficiently for up to 21 days. The combination of GDF5 gene transfer and 3D culture in alginate showed an upregulation of aggrecan and SOX9, two markers for chondrogenesis, and KRT19 as a marker for discogenesis compared to untransfected cells. The cells encapsulated in alginate produced more proteoglycans expressed in GAG/DNA ratio. Furthermore, GDF5 transfected MCS injected into an IVD papain degeneration organ culture model showed a partial recovery of the GAG/DNA ratio after 7 days. In this study we demonstrate the potential of GDF5 transfected MSC as a promising approach for clinical translation for disc regeneration.
Resumo:
BACKGROUND Levosimendan is a calcium-sensitizing drug with inotropic and other properties that may improve outcomes in patients with sepsis.
METHODS We conducted a double-blind, randomized clinical trial to investigate whether levosimendan reduces the severity of organ dysfunction in adults with sepsis. Patients were randomly assigned to receive a blinded infusion of levosimendan (at a dose of 0.05 to 0.2 μg per kilogram of body weight per minute) for 24 hours or placebo in addition to standard care. The primary outcome was the mean daily Sequential Organ Failure Assessment (SOFA) score in the intensive care unit up to day 28 (scores for each of five systems range from 0 to 4, with higher scores indicating more severe dysfunction; maximum score, 20). Secondary outcomes included 28-day mortality, time to weaning from mechanical ventilation, and adverse events.
RESULTS The trial recruited 516 patients; 259 were assigned to receive levosimendan and 257 to receive placebo. There was no significant difference in the mean (±SD) SOFA score between the levosimendan group and the placebo group (6.68±3.96 vs. 6.06±3.89; mean difference, 0.61; 95% confidence interval [CI], −0.07 to 1.29; P=0.053). Mortality at 28 days was 34.5% in the levosimendan group and 30.9% in the placebo group (absolute difference, 3.6 percentage points; 95% CI, −4.5 to 11.7; P=0.43). Among patients requiring ventilation at baseline, those in the levosimendan group were less likely than those in the placebo group to be successfully weaned from mechanical ventilation over the period of 28 days (hazard ratio, 0.77; 95% CI, 0.60 to 0.97; P=0.03). More patients in the levosimendan group than in the placebo group had supraventricular tachyarrhythmia (3.1% vs. 0.4%; absolute difference, 2.7 percentage points; 95% CI, 0.1 to 5.3; P=0.04).
CONCLUSIONS The addition of levosimendan to standard treatment in adults with sepsis was not associated with less severe organ dysfunction or lower mortality. Levosimendan was associated with a lower likelihood of successful weaning from mechanical ventilation and a higher risk of supraventricular tachyarrhythmia. (Funded by the NIHR Efficacy and Mechanism Evaluation Programme and others; LeoPARDS Current Controlled Trials number, ISRCTN12776039.)
Resumo:
The Simplified Acute Physiology Score II (SAPS II) and Logistic Organ Dysfunction System (LODS) are instruments used to classify Intensive Care Unit (ICU) inpatients according to the severity of their condition and risk of death, and evaluate the quality of nursing care. The objective of this study is to evaluate and compare the performance of SAPS II and LODS to predict the mortality of patients admitted to the ICU. The participants were 600 patients from four ICUs located in Sao Paulo, Brazil. Receiver Operator Characteristic (ROC) curves were used to compare the performance of the indexes. Results: The areas under the ROC curves of LODS (0.69) and SAPS II (0.71) indicated moderate discriminatory capacity to identify death or survival. No statistically significant differences were found between these areas (p=0.26). In conclusion, there was equivalence between SAPS II and LODS to estimate the risk of death of ICU patients.
Resumo:
O Simplified Acute Physiology Score II (SAPS II) e o Logistic Organ Dysfunction System (LODS) são instrumentos utilizados para classificar pacientes internados em Unidades de Terapia Intensiva (UTI) conforme a gravidade e o risco de morte, sendo um dos parâmetros da qualidade da assistência de enfermagem. Este estudo teve por objetivo avaliar e comparar as performances do SAPS II e do LODS para predizer mortalidade de pacientes admitidos em UTI. Participaram do estudo 600 pacientes de quatro diferentes UTIs de São Paulo, Brasil. A curva Receiver Operator Characteristic (ROC) foi utilizada para comparar o desempenho discriminatório dos índices. Os resultados foram: as áreas sob a curva do LODS (0.69) e do SAPS II (0.71) apresentaram moderada capacidade discriminatória para predizer mortalidade. Não foi encontrada diferença estatisticamente significativa entre as áreas (p=0,26). Concluiu-se que houve equivalência entre SAPS II e LODS para estimar risco de morte de pacientes em UTI.
Resumo:
Introduction: Chitons (Polyplacophora) are molluscs considered to have a simple nervous system without cephalisation. The position of the class within Mollusca is the topic of extensive debate and neuroanatomical characters can provide new sources of phylogenetic data as well as insights into the fundamental biology of the organisms. We report a new discrete anterior sensory structure in chitons, occurring throughout Lepidopleurida, the order of living chitons that retains plesiomorphic characteristics.
Results: The novel "Schwabe organ" is clearly visible on living animals as a pair of streaks of brown or purplish pigment on the roof of the pallial cavity, lateral to or partly covered by the mouth lappets. We describe the histology and ultrastructure of the anterior nervous system, including the Schwabe organ, in two lepidopleuran chitons using light and electron microscopy. The oesophageal nerve ring is greatly enlarged and displays ganglionic structure, with the neuropil surrounded by neural somata. The Schwabe organ is innervated by the lateral nerve cord, and dense bundles of nerve fibres running through the Schwabe organ epithelium are frequently surrounded by the pigment granules which characterise the organ. Basal cells projecting to the epithelial surface and cells bearing a large number of ciliary structures may be indicative of sensory function. The Schwabe organ is present in all genera within Lepidopleurida (and absent throughout Chitonida) and represents a novel anatomical synapomorphy of the clade.
Conclusions: The Schwabe organ is a pigmented sensory organ, found on the ventral surface of deep-sea and shallow water chitons; although its anatomy is well understood, its function remains unknown. The anterior commissure of the chiton oesophagial nerve ring can be considered a brain. Our thorough review of the chiton central nervous system, and particularly the sensory organs of the pallial cavity, provides a context to interpret neuroanatomical homology and assess this new sense organ.
Resumo:
Acute lung injury is a common, devastating clinical syndrome associated with substantial mortality and morbidity with currently no proven therapeutic interventional strategy to improve patient outcomes. The objectives of this study are to test the potential therapeutic effects of keratinocyte growth factor for patients with acute lung injury on oxygenation and biological indicators of acute inflammation, lung epithelial and endothelial function, protease:antiprotease balance, and lung extracellular matrix degradation and turnover.