999 resultados para ORBITAL EVOLUTION
Resumo:
High mass X-ray binary (HMXB) pulsars are of two types, persistent and transient. 4U1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.
Resumo:
We report here results from detailed timing and spectral studies of the high mass X-ray binary pulsar 4U 1538-52 over several binary periods using observations made with the Rossi X-ray Timing Explorer (RXTE) and BeppoSAX satellites. Pulse timing analysis with the 2003 RXTE data over two binary orbits confirms an eccentric orbit of the system. Combining the orbitial parameters determined from this observation with the earlier measurements we did not find any evidence of orbital decay in this X-ray binary. We have carried out orbital phase resolved spectroscopy to measure changes in the spectral parameters with orbital phase, particularly the absorption column density and the iron line flux. The RXTE-PCA spectra in the 3-20 keV energy range were fitted with a power law and a high energy cut-off along with a Gaussian line at similar to 6.4 keV, whereas the BeppoSAX spectra needed only a power law and Gaussian emission line at similar to 6.4keV in the restricted energy range of 0.3-10.0 keV. An absorption along the line of sight was included for both the RXTE and BeppoSAX data. The variation of the free spectral parameters over the binary orbit was investigated and we found that the variation of the column density of absorbing material in the line of sight with orbital phase is in reasonable agreement with a simple model of a spherically symmetric stellar wind from the companion star.
Resumo:
High mass X-ray binary (H M X B) pulsars are of two types, persistent and transient. 4U 1538-52 is a persistent HMXB whose orbit was previously measured to be circular but the RXTE observations revealed an eccentric orbit. We observed this system with RXTE-PCA in August 2003 and our timing analysis supports the eccentric orbit of the system. However, we do not find any evidence for orbital evolution. Rotational and tidal interactions between the stars of a closed binary system result in apsidal motion which can be measured in systems with eccentric orbit. 4U0115+63 is a Be-transient HMXB whose eccentric orbit was well-determined during its 1978 outburst. We report preliminary results from analysis of data obtained during the 1999 outburst of this source with the RXTE-PCA.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
In this paper, we present a formalism designed to model tidal interaction with a viscoelastic body made of Maxwell material. Our approach remains regular for any spin rate and orientation, and for any orbital configuration including high eccentricities and close encounters. The method is to integrate simultaneously the rotation and the position of the planet as well as its deformation. We provide the equations of motion both in the body frame and in the inertial frame. With this study, we generalize preexisting models to the spatial case and to arbitrary multipole orders using a formalism taken from quantum theory. We also provide the vectorial expression of the secular tidal torque expanded in Fourier series. Applying this model to close-in exoplanets, we observe that if the relaxation time is longer than the revolution period, the phase space of the system is characterized by the presence of several spin-orbit resonances, even in the circular case. As the system evolves, the planet spin can visit different spin-orbit configurations. The obliquity is decreasing along most of these resonances, but we observe a case where the planet tilt is instead growing. These conclusions derived from the secular torque are successfully tested with numerical integrations of the instantaneous equations of motion on HD 80606 b. Our formalism is also well adapted to close-in super-Earths in multiplanet systems which are known to have non-zero mutual inclinations.
Resumo:
We study the orbital evolution of a two co-orbital planet system which undergo tidal interactions with the central star. Our main goal is to investigate the final outcome of a system originally evolving in a 1:1 resonant configuration when the tidal effect acts to change the orbital elements. Preliminary results of the numerical simulations of the exact equations of motions indicate that, at least for equal mass planets, the combined effect of resonant motion and tidal interaction leads the system to orbital instability, including collisions between the planets. We discuss the cases of two hot super-Earths and two hot-Saturn planets, comparing with the results of dynamical maps.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
(10) Hygiea is the fourth largest asteroid of the main belt, by volume and mass, and it is the largest member of its family, that is made mostly by low-albedo, C-type asteroids, typical of the outer main belt. Like many other large families, it is associated with a 'halo' of objects, that extends far beyond the boundary of the core family, as detected by traditional hierarchical clustering methods (HCM) in proper element domains. Numerical simulations of the orbital evolution of family members may help in estimating the family and halo family age, and the original ejection velocity field. But, in order to minimize the errors associated with including too many interlopers, it is important to have good estimates of family membership that include available data on local asteroid taxonomy, geometrical albedo and local dynamics. For this purpose, we obtained synthetic proper elements and frequencies of asteroids in the Hygiea orbital region, with their errors. We revised the current knowledge on asteroid taxonomy, including Sloan Digital Sky Survey-Moving Object Catalog 4th release (SDSS-MOC 4) data, and geometric albedo data from Wide-field Infrared Survey Explorer (WISE) and Near-Earth Object WISE (NEOWISE). We identified asteroid family members using HCM in the domain of proper elements (a, e, sin (i)) and in the domains of proper frequencies most appropriate to study diffusion in the local web of secular resonances, and eliminated possible interlopers based on taxonomic and geometrical albedo considerations. To identify the family halo, we devised a new hierarchical clustering method in an extended domain that includes proper elements, principal components PC1, PC2 obtained based on SDSS photometric data and, for the first time, WISE and NEOWISE geometric albedo. Data on asteroid size distribution, light curves and rotations were also revised for the Hygiea family. The Hygiea family is the largest group in its region, with two smaller families in proper element domain and 18 families in various frequencies domains identified in this work for the first time. Frequency groups tend to extend vertically in the (a, sin (i)) plane and cross not only the Hygiea family but also the near C-type families of Themis and Veritas, causing a mixture of objects all of relatively low albedo in the Hygiea family area. A few high-albedo asteroids, most likely associated with the Eos family, are also present in the region. Finally, the new multidomains hierarchical clustering method allowed us to obtain a good and robust estimate of the membership of the Hygiea family halo, quite separated from other asteroids families halo in the region, and with a very limited (about 3 per cent) presence of likely interlopers. © 2013 The Author Published by Oxford University Press on behalf of the Royal Astronomical Society.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Scientific and programmatic progress toward the development of a cosmic dust collection facility (CDCF) for the proposed space station is documented. Topics addressed include: trajectory sensor concepts; trajectory accuracy and orbital evolution; CDCF pointing direction; development of capture devices; analytical techniques; programmatic progress; flight opportunities; and facility development.
Resumo:
This dissertation presents the results of studies of several rotationally- resolved resonance enhanced multiphoton ionization (REMPI) processes in some simple molecular systems. The objective of these studies is to quantitatively identify the underlying dynamics of this highly state-specific process which utilizes the narrow bandwidth radiation of a laser to ionize a molecule by first preparing an excited state via multiphoton absorption and subsequently ionizing that state before it can decay. Coupled with high-resolution photoelectron spectroscopy, REMPI is clearly an important probe of molecular excited states and their photoioniza tion dynamics.
A key feature of our studies is that they are carried out using accurate Hartree-Fock orbitals to describe the photoelectron orbitals of the molecular ions. The use of such photoelectron orbitals is important in rotationally-resolved studies where the angular momentum coupling in the photoelectron orbital plays a significant role in the photoionization dynamics. In these studies the Hartree-Fock molecular molecular photoelectron orbitals are obtained by numerical solution of a Lippmann-Schwinger integral equation.
Studies reported here include investigations of (i) ionic rotational branching ratios and their energy dependence for REMPI via the A^2Σ^+(3sσ) and D^2Σ^+(3pσ)states of NO, (ii) the influence of angular momentum constraints on branching ratios at low photoelectron energies for REMPI via low-J levels of the resonant intermediate state, (iii) the strong dependence of photoelectron angular distributions on final ionic rotational state and on the alignment in REMPI of the A^2Σ^+ state of NO, (iv) vibrational state dependence of ionic rotational branching ratios arising from rapid orbital evolution in resonant states (E'^2Σ^+(3pσ) of CH), (v) the influence of rovibronic interactions on the rotational branching ratios seen in REMPI via the D^2Σ^+(3pσ) state of NO, and (vi) effects of laser intensity on the photoionization dynamics of REMPI.
Resumo:
On 1998 December 12 a new trans-Neptunian object, 1998 XY95, was discovered as part of a deep search. Recent observations of this object have placed it amongst the class of objects known as the scattered trans-Neptunian objects (TNOs). A total of 39 CCD images of 1998 XY95 were taken over two nights, and these were used to search for a light curve, but no significant periodicity was found. An examination of the possible orbital evolution gives no indication of how it may have arrived on its present orbit. The current best-fitting orbit is unstable, but remains within a band of semi-major axis approximately 2au wide. The bottom of this band is due to 3:1 mean motion resonance with Neptune, while the reason for the top of the band remains unclear.
Resumo:
This report is a review of Darwin`s classical theory of bodily tides in which we present the analytical expressions for the orbital and rotational evolution of the bodies and for the energy dissipation rates due to their tidal interaction. General formulas are given which do not depend on any assumption linking the tidal lags to the frequencies of the corresponding tidal waves (except that equal frequency harmonics are assumed to span equal lags). Emphasis is given to the cases of companions having reached one of the two possible final states: (1) the super-synchronous stationary rotation resulting from the vanishing of the average tidal torque; (2) capture into the 1:1 spin-orbit resonance (true synchronization). In these cases, the energy dissipation is controlled by the tidal harmonic with period equal to the orbital period (instead of the semi-diurnal tide) and the singularity due to the vanishing of the geometric phase lag does not exist. It is also shown that the true synchronization with non-zero eccentricity is only possible if an extra torque exists opposite to the tidal torque. The theory is developed assuming that this additional torque is produced by an equatorial permanent asymmetry in the companion. The results are model-dependent and the theory is developed only to the second degree in eccentricity and inclination (obliquity). It can easily be extended to higher orders, but formal accuracy will not be a real improvement as long as the physics of the processes leading to tidal lags is not better known.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)