1000 resultados para ORAL BIOFILMS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Essential oils (EO) obtained from twenty medicinal and aromatic plants were evaluated for their antimicrobial activity against the oral pathogens Candida albicans, Fusobacterium nucleatum, Porphyromonas gingivalis, Streptococcus sanguis and Streptococcus mitis. The antimicrobial activity of the EO was evaluates by microdilution method determining Minimal Inhibitory Concentration. Chemical analysis of the oils compounds was performed by Gas chromatography-mass spectrometry (CG-MS). The most active EO were also investigated as to their actions on the biolfilm formation. The most of the essential oils (EO) presented moderate to strong antimicrobial activity against the oral pathogens (MIC--Minimal Inhibitory Concentrations values between 0.007 and 1.00 mg/mL). The essential oil from Coriandrum sativum inhibited all oral species with MIC values from 0.007 to 0.250 mg/mL, and MBC/MFC (Minimal Bactericidal/Fungicidal Concentrations) from 0.015 to 0.500 mg/mL. On the other hand the essential oil of C. articulatus inhibited 63.96% of S. sanguis biofilm formation. Through Scanning Eletronic Microscopy (SEM) images no changes were observed in cell morphology, despite a decrease in biofilm formation and changes on biofilm structure. Chemical analysis by Gas Chromatography-Mass Spectrometry (GC-MS) of the C. sativum essential oil revealed major compounds derivatives from alcohols and aldehydes, while Cyperus articulatus and Aloysia gratissima (EOs) presented mono and sesquiterpenes. In conclusion, the crude oil from C. articulatus exhibited the best results of antimicrobial activity e ability to control biofilm formation. The chemical analysis showed the presence of terpenes and monoterpenes such as a-pinene, a-bulnesene and copaene. The reduction of biofilms formation was confirmed from SEM images. The results of this research shows a great potential from the plants studied as new antimicrobial sources.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this work was to study the simultaneous wear-corrosion of titanium (Ti) in the presence of biofilms composed of Streptococcus mutans and Candida albicans. Both organisms were separately grown in specific growth media, and then mixed in a medium supplemented with a high sucrose concentration. Corrosion and tribocorrosion tests were performed after 48 h and 216 h of biofilm growth. Electrochemical corrosion tests indicated a decrease in the corrosion resistance of Ti in the presence of the biofilms although the TiO2 film presented the characteristics of a compact oxide film. While the open circuit potential of Ti indicated a tendency to corrosion in the presence of the biofilms, tribocorrosion tests revealed a low friction on biofilm covered Ti. The properties of the biofilms were similar to those of the lubricant agents used to decrease the wear rate of materials. However, the pH-lowering promoted by microbial species, can lead to corrosion of Ti-based oral rehabilitation systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND There is confusion over the definition of the term "viability state(s)" of microorganisms. "Viability staining" or "vital staining techniques" are used to distinguish live from dead bacteria. These stainings, first established on planctonic bacteria, may have serious shortcomings when applied to multispecies biofilms. Results of staining techniques should be compared with appropriate microbiological data. DISCUSSION Many terms describe "vitality states" of microorganisms, however, several of them are misleading. Authors define "viable" as "capable to grow". Accordingly, staining methods are substitutes, since no staining can prove viability.The reliability of a commercial "viability" staining assay (Molecular Probes) is discussed based on the corresponding product information sheet: (I) Staining principle; (II) Concentrations of bacteria; (III) Calculation of live/dead proportions in vitro. Results of the "viability" kit are dependent on the stains' concentration and on their relation to the number of bacteria in the test. Generally this staining system is not suitable for multispecies biofilms, thus incorrect statements have been published by users of this technique.To compare the results of the staining with bacterial parameters appropriate techniques should be selected. The assessment of Colony Forming Units is insufficient, rather the calculation of Plating Efficiency is necessary. Vital fluorescence staining with Fluorescein Diacetate and Ethidium Bromide seems to be the best proven and suitable method in biofilm research.Regarding the mutagenicity of staining components users should be aware that not only Ethidium Bromide might be harmful, but also a variety of other substances of which the toxicity and mutagenicity is not reported. SUMMARY - The nomenclature regarding "viability" and "vitality" should be used carefully.- The manual of the commercial "viability" kit itself points out that the kit is not suitable for natural multispecies biofilm research, as supported by an array of literature.- Results obtained with various stains are influenced by the relationship between bacterial counts and the amount of stain used in the test. Corresponding vitality data are prone to artificial shifting.- As microbiological parameter the Plating Efficiency should be used for comparison.- Ethidium Bromide is mutagenic. Researchers should be aware that alternative staining compounds may also be or even are mutagenic.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: The organization of biofilms in the oral cavity gives them added resistance to antimicrobial agents. The action of phenothiazinic photosensitizers on oral biofilms has already been reported. However, the action of the malachite green photosensitizer upon biofilm-organized microorganisms has not been described. The objective of the present work was to compare the action of malachite green with the phenothiazinic photosensitizers (methylene blue and toluidine blue) on Staphylococcus aureus and Escherichia coli biofilms.Methods: The biofilms were grown on sample pieces of acrylic resin and subjected to photodynamic therapy using a 660-nm diode laser and photosensitizer concentrations ranging from 37.5 to 3000 mu M. After photodynamic therapy, cells from the biofilms were dispersed in a homogenizer and cultured in Brain Heart Infusion broth for quantification of colony-forming units per experimental protocol. For each tested microorganism, two control groups were maintained: one exposed to the laser radiation without the photosensitizer (L+PS-) and other treated with the photosensitizer without exposure to the red laser light (L-PS+). The results were subjected to descriptive statistical analysis.Results: The best results for S. aureus and E. coli biofilms were obtained with photosensitizer concentrations of approximately 300 mu M methylene blue, with microbial reductions of 0.8-1.0 log(10); 150 mu M toluidine blue, with microbial reductions of 0.9-1.0 log(10); and 3000 mu M malachite green, with microbial reductions of 1.6-4.0 log(10).Conclusion: Greater microbial reduction was achieved with the malachite green photosensitizer when used at higher concentrations than those employed for the phenothiazinic dyes. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The oral cavity is a complex environment where corrosive substances from dietary, human saliva, and oral biofilms may accumulate in retentive areas of dental implant systems and prostheses promoting corrosion at their surfaces. Additionally, during mastication, micromovements may occur between prosthetic joints causing a relative motion between contacting surfaces, leading to wear. Both processes (wear and corrosion) result in a biotribocorrosion system once that occurs in contact with biological tissues and fluids. This review paper is focused on the aspects related to the corrosion and wear behavior of titanium-based structures in the oral environment. Furthermore, the clinical relevance of the oral environment is focused on the harmful effect that acidic substances and biofilms, formed in human saliva, may have on titanium surfaces. In fact, a progressive degradation of titanium by wear and corrosion (tribocorrosion) mechanisms can take place affecting the performance of titanium-based implant and prostheses. Also, the formation of wear debris and metallic ions due to the tribocorrosion phenomena can become toxic for human tissues. This review gathers knowledge from areas like materials sciences, microbiology, and dentistry contributing to a better understanding of bio-tribocorrosion processes in the oral environment.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Denture stomatitis is a common lesion that affects denture wearers. Its multifactorial etiology seems to depend on a complex and poorly characterized biofilm. The purpose of this study was to assess the composition of the microbial biofilm obtained from complete denture wearers with and without denture stomatitis using culture-independent methods. Methods: Samples were collected from healthy denture wearers and from patients with denture stomatitis. Libraries comprising about 600 cloned 16S ribosomal DNA (rDNA) bacterial sequences and 192 cloned eukaryotic internal transcribed spacer (ITS) region sequences, obtained by polymerase chain reactions, were analyzed. Results: The partial 16S rDNA sequences revealed a total of 82 bacterial species identified in healthy subjects and patients with denture stomatitis. Twenty-seven bacterial species were detected in both biofilms, 29 species were exclusively present in patients with denture stomatitis, and 26 were found only in healthy subjects. Analysis of the ITS region revealed the presence of Candida sp. in both biofilms. Conclusion: The results revealed the extent of the microbial flora, suggesting the existence of distinct biofilms in healthy subjects and in patients with denture stomatitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: The aim of this study was to evaluate the biofilm dissolution and cleaning ability of different irrigant solutions on intraorally infected dentin. Methods: One hundred twenty bovine dentin specimens were infected intraorally by using a removable orthodontic device. Thirty samples were used for each irrigant solution: 2% chlorhexidine and 1%, 2.5%, and 5.25% sodium hypochlorite (NaOCl). The solutions were used for 5, 15, and 30 minutes and at 2 experimental volumes, 500 mu L and 1 mL. The samples were stained by using acridine orange dye before and after the experiments and evaluated by using a confocal microscope. The percentage of biofilm, isolated cells, and noncolonized dentin was measured by using a grid system. Differences in the reduction or increase of the studied parameters were assessed by using nonparametric methods (P < .05). Results: The higher values of biofilm dissolution and noncolonized dentin were found in the 30-minute NaOCl group and in the 5-minute and 15-minute groups of 5.25% NaOCL. The use of 2% chlorhexidine solution did not improve the biofilm dissolution or increase the cleaning of the dentin in comparison with the NaOCl solutions (P < .05). Conclusions: Two percent chlorhexidine does not dissolve the biofilms. Thirty minutes of NaOCl are necessary to have higher values of biofilm dissolution and to increase the cleaning of the dentin independently of the concentration in comparison with the 5-minute and 15-minute contact times. (J Endod 2011;37:1134-1138)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Introduction: Denture stomatitis is a common lesion that affects denture wearers. Its multifactorial etiology seems to depend on a complex and poorly characterized biofilm. The purpose of this study was to assess the composition of the microbial biofilm obtained from complete denture wearers with and without denture stomatitis using culture-independent methods.Methods: Samples were collected from healthy denture wearers and from patients with denture stomatitis. Libraries comprising about 600 cloned 16S ribosomal DNA (rDNA) bacterial sequences and 192 cloned eukaryotic internal transcribed spacer (ITS) region sequences, obtained by polymerase chain reactions, were analyzed.Results: The partial 16S rDNA sequences revealed a total of 82 bacterial species identified in healthy subjects and patients with denture stomatitis. Twenty-seven bacterial species were detected in both biofilms, 29 species were exclusively present in patients with denture stomatitis, and 26 were found only in healthy subjects. Analysis of the ITS region revealed the presence of Candida sp. in both biofilms.Conclusion: The results revealed the extent of the microbial flora, suggesting the existence of distinct biofilms in healthy subjects and in patients with denture stomatitis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study evaluated the influence of Psidium cattleianum Sabine (Myrtaceae) and Myracrodruon urundeuva Allemão (Anacardiaceae) aqueous extracts on S. mutans counts and dental enamel micro-hardness of rats submitted to a cariogenic challenge. Sixty Wistar rats were distributed in three groups and received water (control) or aqueous extracts of Psidium cattleianum or Myracrodruon urundeuva as hydration solution. Initially the animals had their sublingual and submandibular salivary glands surgically removed and the parotid ducts ligated. Then the rats were inoculated with 106 CFU of Streptococcus mutans ATCC 35668 and were fed with a cariogenic diet. To detect and quantify the presence of S. mutans, oral biofilms were sampled and microbial DNA was extracted and submitted to amplification by means of real-time PCR (Polymerase Chain Reaction). After seven weeks the animals were sacrificed and enamel demineralization was analyzed by cross-sectional micro-hardness. Both extracts produced a significant reduction on S. mutans counts and decreased the enamel demineralization. It can be concluded that the extracts tested had a significant effect on S. mutans in oral biofilm of the rats, decreasing S. mutans accumulation and enamel demineralization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The association of Helicobacter pylori with different gastric diseases has been continuously discussed in the literature, whereas the last 20 years a large body of publications was intended to characterize the ecological niches and habitats of this pathogen being the mouth a possible habitat for that rod. The present study aimed to discuss the occurrence of this organism as part of the supplemental or transient microbiota of the mouth. Thus, an extensive review of literature covering the period 1990-2014 was carried out with different databases, yielding 5024 articles discussing transmission and occurrence of H. pylori, in English or Portuguese. Articles were selected according to the inclusion and exclusion criteria and data were tabulated and analyzed. Despite the significant heterogeneity of the literature, it was found this microaerophilic has a worldwide distribution, even in the mouth, which behaves as a reservoir for gastric reinfection. The role of oral hygiene and periodontal disease in the distribution of this microorganism remains unclear, but most studies support the hypothesis that oral biofilms and inflammation of periodontium may facilitate the installation of this pathogen in the mouth. Studies suggest that this microorganism could collaborate as a predisposing factor for oral cancer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)