994 resultados para OPTICAL CDMA NETWORKS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This Thesis deals with the fabrication and characterization of novel all-fiber components for access networks. All fiber components offer distinctive advantages due to low forward and backward losses, epoxy free optical path and high power handling. A novel fabrication method for monolithic 1x4 couplers, which are vital components in distributed passive optical networks, is realized. The fabrication method differs from conventional structures with a symmetric coupling profile and hence offers ultra wideband performance and easy process control. New structure for 1x4 couplers, by fusing five fibers is proposed to achieve high uniformity, which gives equivalent uniformity performance to 1x4 planar lightwave splitters, isolation in fused fiber WDM is improved with integration of long period gratings. Packaging techniques of fused couplers are analyzed for long term stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work shows the design, simulation, and analysis of two optical interconnection networks for a Dataflow parallel computer architecture. To verify the optical interconnection network performance on the Dataflow architecture, we have analyzed the load balancing among the processors during the parallel programs executions. The load balancing is a very important parameter because it is directly associated to the dataflow parallelism degree. This article proves that optical interconnection networks designed with simple optical devices can provide efficiently the dataflow requirements of a high performance communication system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computer and telecommunication networks are changing the world dramatically and will continue to do so in the foreseeable future. The Internet, primarily based on packet switches, provides very flexible data services such as e-mail and access to the World Wide Web. The Internet is a variable-delay, variable- bandwidth network that provides no guarantee on quality of service (QoS) in its initial phase. New services are being added to the pure data delivery framework of yesterday. Such high demands on capacity could lead to a “bandwidth crunch” at the core wide-area network, resulting in degradation of service quality. Fortunately, technological innovations have emerged which can provide relief to the end user to overcome the Internet’s well-known delay and bandwidth limitations. At the physical layer, a major overhaul of existing networks has been envisaged from electronic media (e.g., twisted pair and cable) to optical fibers - in wide-area, metropolitan-area, and even local-area settings. In order to exploit the immense bandwidth potential of optical fiber, interesting multiplexing techniques have been developed over the years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The bandwidth requirements of the Internet are increasing every day and there are newer and more bandwidth-thirsty applications emerging on the horizon. Wavelength division multiplexing (WDM) is the next step towards leveraging the capabilities of the optical fiber, especially for wide-area backbone networks. The ability to switch a signal at intermediate nodes in a WDM network based on their wavelengths is known as wavelength-routing. One of the greatest advantages of using wavelength-routing WDM is the ability to create a virtual topology different from the physical topology of the underlying network. This virtual topology can be reconfigured when necessary, to improve performance. We discuss the previous work done on virtual topology design and also discuss and propose different reconfiguration algorithms applicable under different scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the important issues in establishing a fault tolerant connection in a wavelength division multiplexing optical network is computing a pair of disjoint working and protection paths and a free wavelength along the paths. While most of the earlier research focused only on computing disjoint paths, in this work we consider computing both disjoint paths and a free wavelength along the paths. The concept of dependent cost structure (DCS) of protection paths to enhance their resource sharing ability was proposed in our earlier work. In this work we extend the concept of DCS of protection paths to wavelength continuous networks. We formalize the problem of computing disjoint paths with DCS in wavelength continuous networks and prove that it is NP-complete. We present an iterative heuristic that uses a layered graph model to compute disjoint paths with DCS and identify a free wavelength.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To perform Quantum Key Distribution, the mastering of the extremely weak signals carried by the quantum channel is required. Transporting these signals without disturbance is customarily done by isolating the quantum channel from any noise sources using a dedicated physical channel. However, to really profit from this technology, a full integration with conventional network technologies would be highly desirable. Trying to use single photon signals with others that carry an average power many orders of magnitude bigger while sharing as much infrastructure with a conventional network as possible brings obvious problems. The purpose of the present paper is to report our efforts in researching the limits of the integration of QKD in modern optical networks scenarios. We have built a full metropolitan area network testbed comprising a backbone and an access network. The emphasis is put in using as much as possible the same industrial grade technology that is actually used in already installed networks, in order to understand the throughput, limits and cost of deploying QKD in a real network.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new method to study large scale neural networks is presented in this paper. The basis is the use of Feynman- like diagrams. These diagrams allow the analysis of collective and cooperative phenomena with a similar methodology to the employed in the Many Body Problem. The proposed method is applied to a very simple structure composed by an string of neurons with interaction among them. It is shown that a new behavior appears at the end of the row. This behavior is different to the initial dynamics of a single cell. When a feedback is present, as in the case of the hippocampus, this situation becomes more complex with a whole set of new frequencies, different from the proper frequencies of the individual neurons. Application to an optical neural network is reported.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate to what extent the unique features of OPAs (large bandwidths, 0 dB noise figure, phase conjugation, signal regeneration) can be combined and exploited in future long-haul communication networks. Network PMD can complicate the use of phase-sensitive amplification.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis presents a large scale numerical investigation of heterogeneous terrestrial optical communications systems and the upgrade of fourth generation terrestrial core to metro legacy interconnects to fifth generation transmission system technologies. Retrofitting (without changing infrastructure) is considered for commercial applications. ROADM are crucial enabling components for future core network developments however their re-routing ability means signals can be switched mid-link onto sub-optimally configured paths which raises new challenges in network management. System performance is determined by a trade-off between nonlinear impairments and noise, where the nonlinear signal distortions depend critically on deployed dispersion maps. This thesis presents a comprehensive numerical investigation into the implementation of phase modulated signals in transparent reconfigurable wavelength division multiplexed fibre optic communication terrestrial heterogeneous networks. A key issue during system upgrades is whether differential phase encoded modulation formats are compatible with the cost optimised dispersion schemes employed in current 10 Gb/s systems. We explore how robust transmission is to inevitable variations in the dispersion mapping and how large the margins are when suboptimal dispersion management is applied. We show that a DPSK transmission system is not drastically affected by reconfiguration from periodic dispersion management to lumped dispersion mapping. A novel DPSK dispersion map optimisation methodology which reduces drastically the optimisation parameter space and the many ways to deploy dispersion maps is also presented. This alleviates strenuous computing requirements in optimisation calculations. This thesis provides a very efficient and robust way to identify high performing lumped dispersion compensating schemes for use in heterogeneous RZ-DPSK terrestrial meshed networks with ROADMs. A modified search algorithm which further reduces this number of configuration combinations is also presented. The results of an investigation of the feasibility of detouring signals locally in multi-path heterogeneous ring networks is also presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Detailed theoretical and numerical investigations of the transmission performance of adaptively modulated optical orthogonal frequency division multiplexed (AMOOFDM) signals are undertaken, for the first time, in optical amplification and chromatic dispersion (CD) compensation free single mode fiber (SMF) intensity-modulated and directdetection (IMDD) systems using two cascaded semiconductor optical amplifiers in a counterpropagating configuration as an intensity modulator (TC-SOA-CC-IM). A theoretical model describing the characteristics of this configuration is developed. Extensive performance comparisons are also made between the TC-SOA-CC and the single SOA intensity modulators. It is shown that, the TC-SOA-CC reaches its strongly saturated region using a lower input optical power much faster than the single SOA resulting in significantly reduced effective carrier lifetime and thus wide TC-SOA-CC bandwidths. It is shown that at low input optical power, we can increase the signal line rate almost 115% which will be more than twice the transmission performance offered by single SOA. In addition, the TCSOA-CC-IM is capable of supporting signal line rates higher than corresponding to the SOA-IM by using 10dB lower input optical powers. For long transmission distance, the TC-SOA-CC-IM has much stronger CD compensation capability compared to the SOA-IM. In addition the use of TC-SOA-CC-IM is more effective regarding the capability to benefit from the CD compensation for shorter distances starting at 60km SMF, whilst for the SOA-IM starting at 90km. © 2014 Optical Society of America.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical transport networks (OTN) must be prepared in terms of better resource utilization, for accommodating unicast and multicast traffic together. Light-trees have been proposed for supporting multicast connections in OTN. Nevertheless when traffic grooming is applied in light-trees, resources can be underutilized as traffic can be routed to undesirable destinations in order to avoid optical-electrical-optical (OEO) conversions. In this paper, a novel architecture named S/G light- tree for supporting unicast/multicast connections is proposed. The architecture allows traffic dropping and aggregation in different wavelengths without performing OEO conversions. A heuristic that routes traffic demands using less wavelengths by taking advantage of the proposed architecture is designed as well. Simulation results show that the architecture can minimize the number of used wavelengths and OEO conversions when compared to light-trees

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Optical transport networks (OTN) must be prepared in terms of better resource utilization, for accommodating unicast and multicast traffic together. Light-trees have been proposed for supporting multicast connections in OTN. Nevertheless when traffic grooming is applied in light-trees, resources can be underutilized as traffic can be routed to undesirable destinations in order to avoid optical-electrical-optical (OEO) conversions. In this paper, a novel architecture named S/G light- tree for supporting unicast/multicast connections is proposed. The architecture allows traffic dropping and aggregation in different wavelengths without performing OEO conversions. A heuristic that routes traffic demands using less wavelengths by taking advantage of the proposed architecture is designed as well. Simulation results show that the architecture can minimize the number of used wavelengths and OEO conversions when compared to light-trees

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, there has been growing interest in developing optical fiber networks to support the increasing bandwidth demands of multimedia applications, such as video conferencing and World Wide Web browsing. One technique for accessing the huge bandwidth available in an optical fiber is wavelength-division multiplexing (WDM). Under WDM, the optical fiber bandwidth is divided into a number of nonoverlapping wavelength bands, each of which may be accessed at peak electronic rates by an end user. By utilizing WDM in optical networks, we can achieve link capacities on the order of 50 THz. The success of WDM networks depends heavily on the available optical device technology. This paper is intended as a tutorial on some of the optical device issues in WDM networks. It discusses the basic principles of optical transmission in fiber and reviews the current state of the art in optical device technology. It introduces some of the basic components in WDM networks, discusses various implementations of these components, and provides insights into their capabilities and limitations. Then, this paper demonstrates how various optical components can be incorporated into WDM optical networks for both local and wide-area applications. Last, the paper provides a brief review of experimental WDM networks that have been implemented.