937 resultados para OPIOID PEPTIDES


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Research has suggested that exogenous opioid substances can have direct effects on cardiac muscle or influence neurotransmitter release via presynaptic modulation of neuronal inputs to the heart. In the present study, multiple-labelling immunohistochemistry was employed to determine the distribution of endogenous opioid peptides within the guinea-pig heart. Approximately 40% of cardiac ganglion cells contained immunoreactivity for dynorphin A (1-8), dynorphin A (1-17) and dynorphin B whilst 20% displayed leu-enkephalin immunoreactivity. Different populations of opioid-containing ganglion cells were identified according to the co-existence of opioid immunoreactivity with immunoreactivity for somatostatin and neuropeptide Y. Immunoreactivity for prodynorphin-derived peptides was observed in many sympathetic axons in the heart and was also observed, though to a lesser extent, in sensory axons. Leu-enkephalin immunoreactivity was observed in occasional sympathetic and sensory axons. No immunoreactivity was observed for met-enkephalin-arg-gly-leu or for beta-endorphin. These results demonstrate that prodynorphin-derived peptides are present in parasympathetic, sympathetic and sensory nerves within the heart, but suggest that only the prodynorphin gene is expressed in guinea-pig cardiac nerves. This study has shown that endogenous opioid peptides are well placed to regulate cardiac function via both autonomic and sensory pathways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nicotine has been shown to stimulate the release of vasopressin and to cause significant hemodynamic changes. The mechanisms leading to enhanced vasopressin secretion and the vascular consequences of the high plasma vasopressin levels during nicotine infusion have not yet been determined. Therefore, the purposes of the present study were 1) to examine in normal conscious rats the role of opioid peptides in the nicotine-induced increase in plasma vasopressin levels and 2) to assess the role of vasopressin in the hemodynamic effects of nicotine (20 micrograms/min for 15 min) using a specific V1 antagonist of the vascular actions of vasopressin. Plasma vasopressin levels were significantly increased in the nicotine-treated animals (39.5 +/- 10 vs. 3.7 +/- 0.6 pg/ml in the controls, P less than .01). Pretreatment with naloxone, an antagonist of opioids at their receptors, did not reduce the vasopressin levels (47.7 +/- 9 pg/ml). Nicotine also increased mean blood pressure (122.5 +/- 2.5 to 145.2 +/- 3.3 mm Hg, P less than .01) and decreased heart rate (461 +/- 6 to 386 +/- 14.5 beats/min, P less than .05). Administration of the vasopressin V1 antagonist before the nicotine infusion did not affect the systemic hemodynamics or the regional blood flow distribution, as assessed by radiolabeled microspheres. Thus, these results suggest that the nicotine-induced secretion of vasopressin is not mediated by opioid receptors and that the high plasma vasopressin levels do not exert any significant hemodynamic effect on cardiac output or blood flow distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tachykinin and opioid peptides play a central role in pain transmission, modulation and inhibition. The treatment of pain is very important in medicine and many studies using NK1 receptor antagonists failed to show significant analgesic effects in humans. Recent investigations suggest that both pronociceptive tachykinins and the analgesic opioid systems are important for normal pain sensation. The analysis of opioid peptides in Tac1-/- spinal cord tissues offers a great opportunity to verify the influence of the tachykinin system on specific opioid peptides. The objectives of this study were to develop a HPLC–MS/MRM assay to quantify targeted peptides in spinal cord tissues. Secondly, we wanted to verify if the Tac1-/- mouse endogenous opioid system is hampered and therefore affect significantly the pain modulatory pathways. Targeted neuropeptides were analyzed by high performance liquid chromatography linear ion trap mass spectrometry. Our results reveal that EM-2, Leu-Enk and Dyn A were down-regulated in Tac1-/- spinal cord tissues. Interestingly, Dyn A was almost 3 fold down-regulated (p < 0.0001). No significant concentration differences were observed in mouse Tac1-/- spinal cords for Met-Enk and CGRP. The analysis of Tac1-/- mouse spinal cords revealed noteworthy decreases of EM-2, Leu-Enk and Dyn A concentrations which strongly suggest a significant impact on the endogenous pain-relieving mechanisms. These observations may have insightful impact on future analgesic drug developments and therapeutic strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present work aimed to investigate the effects of acute sucrose treatment on the perception of painful stimuli. Specifically, we sought to determine the involvement of the endogenous opioid peptide-mediated system as well as the role of the mu(1)-opioid receptor in antinociception organisation induced by acute sucrose intake. Nociception was assessed with the tail-flick test in rats (75, 150 and 250 g) of different ages acutely pre-treated with 500 mu L. of a sucrose solution (25, 50, 150 and 250 g/L) or tap water. Young and Adult rats (250 g) showed antinociception after treatment with 50 g/L (during 5 min) and 150 g/L and 250 g/L (during 20 min) sucrose solutions. Surprisingly, this antinociception was more consistent in mature adult rodents than in pups. To evaluate the role of opioid systems, mature adult rodents were pre-treated with different doses (0.25, 1 or 4mg/kg) of the non-selective opioid receptor antagonist naloxone, the selective pi-opioid receptor antagonist naloxonazine or vehicle followed by 250 g/L sucrose solution treatment. Sucrose-induced antinociception was reduced by pre-treatment with both naloxone and naloxonazine. The present findings suggest that sweet substance-induced hypo-analgesia is augmented by increasing sucrose concentrations in young and adult rodents. Acute oral sucrose treatment inhibits pain in laboratory animal by mediating endogenous opioid peptide and mu(1)-opioid receptor actions. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The effect of thiopentone/halothane anaesthesia on the release of endogenous opioid, adrenocorticotrophin, arginine vasopressin, cortisol and catecholamine was investigated in ponies. The contribution made by halothane itself was studied by maintaining six ponies with a constant 12 per cent end tidal halothane concentration and five with a concentration ranging between 0.8 and 12 per cent. Cardiorespiratory depression was more prolonged in the ponies receiving a constant 1-2 per cent end tidal halothane concentration than in those which received less halothane. Plasma lactate concentration increased and haematocrit decreased during halothane anaesthesia. The concentrations of met-enkephalin, dynorphin and catecholamines did not change and those of β-endorphin, adrenocorticotrophin, arginine vasopressin and cortisol increased during halothane anaesthesia. Halothane appeared to be a major stimulus to pituitary adrenocortical activation because the adrenocortical secretion was proportional to the amount of halothane inhaled. β-endorphin increased proportionally more than adrenocorticotrophin and their plasma concentrations were not correlated, suggesting that they have independent secretion mechanisms.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The organization of the nervous and immune systems is characterized by obvious differences and striking parallels. Both systems need to relay information across very short and very long distances. The nervous system communicates over both long and short ranges primarily by means of more or less hardwired intercellular connections, consisting of axons, dendrites, and synapses. Longrange communication in the immune system occurs mainly via the ordered and guided migration of immune cells and systemically acting soluble factors such as antibodies, cytokines, and chemokines. Its short-range communication either is mediated by locally acting soluble factors or transpires during direct cell–cell contact across specialized areas called “immunological synapses” (Kirschensteiner et al., 2003). These parallels in intercellular communication are complemented by a complex array of factors that induce cell growth and differentiation: these factors in the immune system are called cytokines; in the nervous system, they are called neurotrophic factors. Neither the cytokines nor the neurotrophic factors appear to be completely exclusive to either system (Neumann et al., 2002). In particular, mounting evidence indicates that some of the most potent members of the neurotrophin family, for example, nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF), act on or are produced by immune cells (Kerschensteiner et al., 1999) There are, however, other neurotrophic factors, for example the insulin-like growth factor-1 (IGF-1), that can behave similarly (Kermer et al., 2000). These factors may allow the two systems to “cross-talk” and eventually may provide a molecular explanation for the reports that inflammation after central nervous system (CNS) injury has beneficial effects (Moalem et al., 1999). In order to shed some more light on such a cross-talk, therefore, transcription factors modulating mu-opioid receptor (MOPr) expression in neurons and immune cells are here investigated. More precisely, I focused my attention on IGF-I modulation of MOPr in neurons and T-cell receptor induction of MOPr expression in T-lymphocytes. Three different opioid receptors [mu (MOPr), delta (DOPr), and kappa (KOPr)] belonging to the G-protein coupled receptor super-family have been cloned. They are activated by structurallyrelated exogenous opioids or endogenous opioid peptides, and contribute to the regulation of several functions including pain transmission, respiration, cardiac and gastrointestinal functions, and immune response (Zollner and Stein 2007). MOPr is expressed mainly in the central nervous system where it regulates morphine-induced analgesia, tolerance and dependence (Mayer and Hollt 2006). Recently, induction of MOPr expression in different immune cells induced by cytokines has been reported (Kraus et al., 2001; Kraus et al., 2003). The human mu-opioid receptor gene (OPRM1) promoter is of the TATA-less type and has clusters of potential binding sites for different transcription factors (Law et al. 2004). Several studies, primarily focused on the upstream region of the OPRM1 promoter, have investigated transcriptional regulation of MOPr expression. Presently, however, it is still not completely clear how positive and negative transcription regulators cooperatively coordinate cellor tissue-specific transcription of the OPRM1 gene, and how specific growth factors influence its expression. IGF-I and its receptors are widely distributed throughout the nervous system during development, and their involvement in neurogenesis has been extensively investigated (Arsenijevic et al. 1998; van Golen and Feldman 2000). As previously mentioned, such neurotrophic factors can be also produced and/or act on immune cells (Kerschenseteiner et al., 2003). Most of the physiologic effects of IGF-I are mediated by the type I IGF surface receptor which, after ligand binding-induced autophosphorylation, associates with specific adaptor proteins and activates different second messengers (Bondy and Cheng 2004). These include: phosphatidylinositol 3-kinase, mitogen-activated protein kinase (Vincent and Feldman 2002; Di Toro et al. 2005) and members of the Janus kinase (JAK)/STAT3 signalling pathway (Zong et al. 2000; Yadav et al. 2005). REST plays a complex role in neuronal cells by differentially repressing target gene expression (Lunyak et al. 2004; Coulson 2005; Ballas and Mandel 2005). REST expression decreases during neurogenesis, but has been detected in the adult rat brain (Palm et al. 1998) and is up-regulated in response to global ischemia (Calderone et al. 2003) and induction of epilepsy (Spencer et al. 2006). Thus, the REST concentration seems to influence its function and the expression of neuronal genes, and may have different effects in embryonic and differentiated neurons (Su et al. 2004; Sun et al. 2005). In a previous study, REST was elevated during the early stages of neural induction by IGF-I in neuroblastoma cells. REST may contribute to the down-regulation of genes not yet required by the differentiation program, but its expression decreases after five days of treatment to allow for the acquisition of neural phenotypes. Di Toro et al. proposed a model in which the extent of neurite outgrowth in differentiating neuroblastoma cells was affected by the disappearance of REST (Di Toro et al. 2005). The human mu-opioid receptor gene (OPRM1) promoter contains a DNA sequence binding the repressor element 1 silencing transcription factor (REST) that is implicated in transcriptional repression. Therefore, in the fist part of this thesis, I investigated whether insulin-like growth factor I (IGF-I), which affects various aspects of neuronal induction and maturation, regulates OPRM1 transcription in neuronal cells in the context of the potential influence of REST. A series of OPRM1-luciferase promoter/reporter constructs were transfected into two neuronal cell models, neuroblastoma-derived SH-SY5Y cells and PC12 cells. In the former, endogenous levels of human mu-opioid receptor (hMOPr) mRNA were evaluated by real-time PCR. IGF-I upregulated OPRM1 transcription in: PC12 cells lacking REST, in SH-SY5Y cells transfected with constructs deficient in the REST DNA binding element, or when REST was down-regulated in retinoic acid-differentiated cells. IGF-I activates the signal transducer and activator of transcription-3 (STAT3) signaling pathway and this transcription factor, binding to the STAT1/3 DNA element located in the promoter, increases OPRM1 transcription. T-cell receptor (TCR) recognizes peptide antigens displayed in the context of the major histocompatibility complex (MHC) and gives rise to a potent as well as branched intracellular signalling that convert naïve T-cells in mature effectors, thus significantly contributing to the genesis of a specific immune response. In the second part of my work I exposed wild type Jurkat CD4+ T-cells to a mixture of CD3 and CD28 antigens in order to fully activate TCR and study whether its signalling influence OPRM1 expression. Results were that TCR engagement determined a significant induction of OPRM1 expression through the activation of transcription factors AP-1, NF-kB and NFAT. Eventually, I investigated MOPr turnover once it has been expressed on T-cells outer membrane. It turned out that DAMGO induced MOPr internalisation and recycling, whereas morphine did not. Overall, from the data collected in this thesis we can conclude that that a reduction in REST is a critical switch enabling IGF-I to up-regulate human MOPr, helping these findings clarify how human MOPr expression is regulated in neuronal cells, and that TCR engagement up-regulates OPRM1 transcription in T-cells. My results that neurotrophic factors a and TCR engagement, as well as it is reported for cytokines, seem to up-regulate OPRM1 in both neurons and immune cells suggest an important role for MOPr as a molecular bridge between neurons and immune cells; therefore, MOPr could play a key role in the cross-talk between immune system and nervous system and in particular in the balance between pro-inflammatory and pro-nociceptive stimuli and analgesic and neuroprotective effects.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The G protein-coupled μ-opioid receptor (μOR) mediates the physiological effects of endogenous opioid peptides as well as the structurally distinct opioid alkaloids morphine and etorphine. An intriguing feature of μOR signaling is the differential receptor trafficking and desensitization properties following activation by distinct agonists, which have been proposed as possible mechanisms related to opioid tolerance. Here we report that the ability of distinct opioid agonists to differentially regulate μOR internalization and desensitization is related to their ability to promote G protein-coupled receptor kinase (GRK)-dependent phosphorylation of the μOR. Although both etorphine and morphine effectively activate the μOR, only etorphine elicits robust μOR phosphorylation followed by plasma membrane translocation of β-arrestin and dynamin-dependent receptor internalization. In contrast, corresponding to its inability to cause μOR internalization, morphine is unable to either elicit μOR phosphorylation or stimulate β-arrestin translocation. However, upon the overexpression of GRK2, morphine gains the capacity to induce μOR phosphorylation, accompanied by the rescue of β-arrestin translocation and receptor sequestration. Moreover, overexpression of GRK2 also leads to an attenuation of morphine-mediated inhibition of adenylyl cyclase. These findings point to the existence of marked differences in the ability of different opioid agonists to promote μOR phosphorylation by GRK. These differences may provide the molecular basis underlying the different analgesic properties of opioid agonists and contribute to the distinct ability of various opioids to induce drug tolerance.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microglial cells, the resident macrophages of the brain, play an important role in the neuropathogenesis of human immunodeficiency virus type 1 (HIV-1), and recent studies suggest that opioid peptides regulate the function of macrophages from somatic tissues. We report herein the presence of kappa opioid receptors (KORs) in human fetal microglia and inhibition of HIV-1 expression in acutely infected microglial cell cultures treated with KOR ligands. Using reverse transcriptase-polymerase chain reaction and sequencing analyses, we found that mRNA for the KOR was constitutively expressed in microglia and determined that the nucleotide sequence of the open reading frame was identical to that of the human brain KOR gene. The expression of KOR in microglial cells was confirmed by membrane binding of [3H]U69,593, a kappa-selective ligand, and by indirect immunofluorescence. Treatment of microglial cell cultures with U50,488 or U69,593 resulted in a dose-dependent inhibition of expression of the monocytotropic HIV-1 SF162 strain. This antiviral effect of the kappa ligands was blocked by the specific KOR antagonist, nor-binaltrophimine. These findings suggest that kappa opioid agonists have immunomodulatory activity in the brain, and that these compounds could have potential in the treatment of HIV-1-associated encephalopathy.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Immune cell-derived opioid peptides can activate opioid receptors on peripheral sensory nerves to inhibit inflammatory pain. The intrinsic mechanisms triggering this neuroimmune interaction are unknown. This study investigates the involvement of endogenous corticotropin-releasing factor (CRF) and interleukin-1beta (IL-1). A specific stress paradigm, cold water swim (CWS), produces potent opioid receptor-specific antinociception in inflamed paws of rats. This effect is dose-dependently attenuated by intraplantar but not by intravenous alpha-helical CRF. IL-1 receptor antagonist is ineffective. Similarly, local injection of antiserum against CRF, but not to IL-1, dose-dependently reverses this effect. Intravenous anti-CRF is only inhibitory at 10(4)-fold higher concentrations and intravenous CRF does not produce analgesia. Pretreatment of inflamed paws with an 18-mer 3'-3'-end inverted CRF-antisense oligodeoxynucleotide abolishes CWS-induced antinociception. The same treatment significantly reduces the amount of CRF extracted from inflamed paws and the number of CRF-immunostained cells without affecting gross inflammatory signs. A mismatch oligodeoxynucleotide alters neither the CWS effect nor CRF immunoreactivity. These findings identify locally expressed CRF as the predominant agent to trigger opioid release within inflamed tissue. Endogenous IL-1, circulating CRF or antiinflammatory effects, are not involved. Thus, an intact immune system plays an essential role in pain control, which is important for the understanding of pain in immunosuppressed patients with cancer or AIDS.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study was designed to determine in rats whether morphine-3-glucuronide (M3G) produces its neuro-excitatory effects most potently in the ventral hippocampus (as has been reported previously for subanalgesic doses of opioid peptides). Guide cannulae were implanted into one of seven regions of the rat brain: lateral ventricle; ventral, CA1 and CA2-CA3 regions of the hippocampus; amygdala; striatum or cortex. After a 7 day recovery period, rats received intracerebral injections of (i) M3G (1.1 or 11 nmol) (ii) DADLE ([D-Ala(2),D-Leu(5)]enkephalin), (45 nmol, positive controls) or (iii) vehicle (deionised water), and behavioral excitation was quantified over 80 min. High-dose M3G (11 nmol) evoked behavioral excitation in all brain regions but the onset, severity and duration of these effects varied considerably among brain regions. By contrast, low-dose M3G (1.1 nmol) evoked excitatory behaviors only when administered into the ventral hippocampus and the amygdala, with the most potent effects being observed in the ventral hippocampus. Prior administration of the nonselective opioid antagonists, naloxone and beta-funaltrexamine into the ventral hippocampus, markedly attenuated low-dose M3G's excitatory effects but did not significantly alter levels of excitation evoked by high-dose M3G. Naloxone given 10 min after M3G (1.1 or 11 nmol) did not significantly attenuate behavioral excitation. Thus, M3G's excitatory behavioral effects occur most potently in the ventral hippocampus as reported previously for subanalgesic doses of opioid peptides, and appear to be mediated through at least two mechanisms, one possibly involving excitatory opioid receptors and the other, non-opioid receptors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

1. Recent findings have suggested a significant involvement of the immune system in the control of pain. Immune cells contain opioid peptides that are released within inflamed tissue and act at opioid receptors on peripheral sensory nerve endings. It is also apparent that different types of lymphocytes contain P-endorphin, memory T cells containing more beta -endorphin than naive cells. 2. These findings highlight an integral link between immune cell migration and inflammatory pain, The present review highlights immune system involvement in the site-directed control of inflammatory pain. 3. Full-length mRNA transcripts for opioid precursor proteins are expressed in immune cells. Increased expression of pro-opiomelanocortin mRNA and beta -endorphin has been demonstrated in stimulated lymphocytes and lymphocytes from animals with inflammation. 4. Cytokines and corticotropin-releasing factor (CRF) release opioids from immune cells, Potent peripheral analgesia due to direct injection of CRF can be blocked by antagonists to CRF, antibodies to opioid peptides, antisense to CRF and opioid receptor-specific antagonists. The release of opioid peptides from lymphocytes is calcium dependent and opioid receptor specific. Furthermore, endogenous sources of opioid peptides produce potent analgesia when implanted into the spinal cord. 5. Activated immune cells migrate directly to inflamed tissue using cell adhesion molecules to adhere to the epithelial surface of the vasculature in inflamed tissue. Lymphocytes that have been activated can express opioid peptides, Memory type T cells that contain opioid peptides are present within inflamed tissue; naive cells are not present in inflamed tissue and do not contain opioid peptides, Inhibiting the migration of memory type T cells into inflamed tissue by blocking selectins results in reduced numbers of beta -endorphin containing cells, a reduced quantity of beta -endorphin in inflamed paws and reduced stress- and CRF-induced peripheral analgesia. 6. Immunosuppression is associated with increased pain in patients. Moreover, immunosuppression results in decreased lymphocyte numbers as well as decreased analgesia in animal models.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Previous studies have demonstrated that the initial hypoalgesic effect of spinal manipulative therapy was not antagonized by naloxone and did not exhibit tolerance with repeated applications. The implication is that endogenous opioid mechanisms of pain relief are probably not at play in spinal manipulative therapy. The role of endogenous opioid peptides in manipulation of the peripheral joints has not been investigated. The aim of this study was to evaluate whether the initial hypoalgesic effect of a peripheral manipulative technique (mobilization-with-movement treatment for the elbow) demonstrated a tolerance to repeated applications (ie, reduction in magnitude of effect over repeated applications). Twenty-four participants with unilateral chronic lateral epicondylalgia participated in the study. A repeated measures study was conducted to examine the effect of repeated applications of the mobilization-with-movement treatment for the elbow on 6 separate treatment occasions at least 2 days apart. Pain-free grip strength and pressure pain threshold were chosen as the pain-related outcome measures. Changes in the percent maximum possible effect scores of measures of hypoalgesia were evaluated across the 6 treatment sessions by using linear trend analysis. The results showed no significant difference for the hypoalgesic effect of the treatment technique between sessions (P >.05). This peripheral manipulative therapy treatment technique appeared to have a similar effect profile to previously studied spinal manipulative therapy techniques, thereby contributing to the body of knowledge that indicates that manipulative therapy most likely induces a predominant non-opioid form of analgesia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two methods of differential isotopic coding of carboxylic groups have been developed to date. The first approach uses d0- or d3-methanol to convert carboxyl groups into the corresponding methyl esters. The second relies on the incorporation of two 18O atoms into the C-terminal carboxylic group during tryptic digestion of proteins in H(2)18O. However, both methods have limitations such as chromatographic separation of 1H and 2H derivatives or overlap of isotopic distributions of light and heavy forms due to small mass shifts. Here we present a new tagging approach based on the specific incorporation of sulfanilic acid into carboxylic groups. The reagent was synthesized in a heavy form (13C phenyl ring), showing no chromatographic shift and an optimal isotopic separation with a 6 Da mass shift. Moreover, sulfanilic acid allows for simplified fragmentation in matrix-assisted laser desorption/ionization (MALDI) due the charge fixation of the sulfonate group at the C-terminus of the peptide. The derivatization is simple, specific and minimizes the number of sample treatment steps that can strongly alter the sample composition. The quantification is reproducible within an order of magnitude and can be analyzed either by electrospray ionization (ESI) or MALDI. Finally, the method is able to specifically identify the C-terminal peptide of a protein by using GluC as the proteolytic enzyme.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It has been shown previously that the endogenous opioid system may be involved in the behavioral effects of nicotine. In the present study, the participation of endogenous enkephalins on nicotine responses has been investigated by using preproenkephalin knock-out mice. Acute nicotine-induced hypolocomotion remained unaffected in these mice. In contrast, antinociception elicited in the tail-immersion and hot-plate tests by acute nicotine administration was reduced in mutant animals. The rewarding properties of nicotine were then investigated using the place-conditioning paradigm. Nicotine induced a conditioned place preference in wild-type animals, but this effect was absent in knock-out mice. Accordingly, in vivo microdialysis studies revealed that the enhancement in dopamine extracellular levels in the nucleus accumbens induced by nicotine was also reduced in preproenkephalin-deficient mice. Finally, the somatic expression of the nicotine withdrawal syndrome precipitated in nicotine-dependent mice by mecamylamine was significantly attenuated in mutant animals. In summary, the present results indicate that endogenous opioid peptides derived from preproenkephalin are involved in the antinociceptive and rewarding properties of nicotine and participate in the expression of physical nicotine dependence.