976 resultados para OPERA CNGS neutrini nu_e sciami elettromagnetici trigger identificazione
Resumo:
OPERA è un esperimento installato ai Laboratori del Gran Sasso, lungo la linea del fascio di neutrini CNGS prodotto al CERN. Il suo scopo principale è osservare - per la prima volta in modo diretto - il fenomeno dell'oscillazione di neutrini muonici del CNGS, in neutrini-tau. L'esperimento è attualmente in fase di analisi dati. Accanto al canale di oscillazione dominante nu_mu--> nu_tau OPERA può studiare anche il canale nu_mu--> nu_e grazie all'ottima capacità di identificazione degli elettroni. OPERA utilizza un bersaglio attivo, finemente segmentato in moduli ("brick") costituiti da pile di fogli di emulsioni nucleare e lastre di piombo. Ogni "brick", il cui spessore è equivalente a 10 lunghezze di radiazione, è un rivelatore "stand-alone" attraverso il quale è possibile identificare e ricostruire gli sciami elettromagnetici e quindi le interazioni a corrente carica di neutrini elettronici. Il progetto di tesi si inquadra in questo contesto. Gli obiettivi specifici sono: - implementazione di una nuova procedura di trigger applicata per l'identificazione degli sciami elettromagnetici; - validazione della suddetta procedura sui dati simulati.
Resumo:
The OPERA experiment aims at the direct observation of ν_mu -> ν_tau oscillations in the CNGS (CERN Neutrinos to Gran Sasso) neutrino beam produced at CERN; since the ν_e contamination in the CNGS beam is low, OPERA will also be able to study the sub-dominant oscillation channel ν_mu -> ν_e. OPERA is a large scale hybrid apparatus divided in two supermodules, each equipped with electronic detectors, an iron spectrometer and a highly segmented ~0.7 kton target section made of Emulsion Cloud Chamber (ECC) units. During my research work in the Bologna Lab. I have taken part to the set-up of the automatic scanning microscopes studying and tuning the scanning system performances and efficiencies with emulsions exposed to a test beam at CERN in 2007. Once the triggered bricks were distributed to the collaboration laboratories, my work was centered on the procedure used for the localization and the reconstruction of neutrino events.
Resumo:
In the thesis is presented the measurement of the neutrino velocity with the OPERA experiment in the CNGS beam, a muon neutrino beam produced at CERN. The OPERA detector observes muon neutrinos 730 km away from the source. Previous measurements of the neutrino velocity have been performed by other experiments. Since the OPERA experiment aims the direct observation of muon neutrinos oscillations into tau neutrinos, a higher energy beam is employed. This characteristic together with the higher number of interactions in the detector allows for a measurement with a much smaller statistical uncertainty. Moreover, a much more sophisticated timing system (composed by cesium clocks and GPS receivers operating in “common view mode”), and a Fast Waveform Digitizer (installed at CERN and able to measure the internal time structure of the proton pulses used for the CNGS beam), allows for a new measurement with a smaller systematic error. Theoretical models on Lorentz violating effects can be investigated by neutrino velocity measurements with terrestrial beams. The analysis has been carried out with blind method in order to guarantee the internal consistency and the goodness of each calibration measurement. The performed measurement is the most precise one done with a terrestrial neutrino beam, the statistical accuracy achieved by the OPERA measurement is about 10 ns and the systematic error is about 20 ns.
Resumo:
A first result of the search for ν ( )μ( ) → ν ( )e( ) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of ν ( )e( ) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters θ (new) and suggested by the LSND and MiniBooNE experiments. For large values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2θ (new)) based on a Bayesian statistical method reaches the value 7.2 × 10(−3).
Resumo:
The OPERA neutrino experiment is designed to perform the first observation of neutrino oscillations in direct appearance mode in the νμ→ντ channel, via the detection of the τ-leptons created in charged current ντ interactions. The detector, located in the underground Gran Sasso Laboratory, consists of an emulsion/lead target with an average mass of about 1.2 kt, complemented by electronic detectors. It is exposed to the CERN Neutrinos to Gran Sasso beam, with a baseline of 730 km and a mean energy of 17 GeV. The observation of the first ντ candidate event and the analysis of the 2008-2009 neutrino sample have been reported in previous publications. This work describes substantial improvements in the analysis and in the evaluation of the detection efficiencies and backgrounds using new simulation tools. The analysis is extended to a sub-sample of 2010 and 2011 data, resulting from an electronic detector-based pre-selection, in which an additional ντ candidate has been observed. The significance of the two events in terms of a νμ→ντ oscillation signal is of 2.40 σ.
Resumo:
In spring 2012 CERN provided two weeks of a short bunch proton beam dedicated to the neutrino velocity measurement over a distance of 730 km. The OPERA neutrino experiment at the underground Gran Sasso Laboratory used an upgraded setup compared to the 2011 measurements, improving the measurement time accuracy. An independent timing system based on the Resistive Plate Chambers was exploited providing a time accuracy of ∼1 ns. Neutrino and anti-neutrino contributions were separated using the information provided by the OPERA magnetic spectrometers. The new analysis profited from the precision geodesy measurements of the neutrino baseline and of the CNGS/LNGS clock synchronization. The neutrino arrival time with respect to the one computed assuming the speed of light in vacuum is found to be δtν≡TOFc−TOFν=(0.6±0.4 (stat.)±3.0 (syst.)) ns and δtν¯≡TOFc−TOFν¯=(1.7±1.4 (stat.)±3.1 (syst.)) ns for νμ and ν¯μ, respectively. This corresponds to a limit on the muon neutrino velocity with respect to the speed of light of −1.8×10−6<(vν−c)/c<2.3×10−6 at 90% C.L. This new measurement confirms with higher accuracy the revised OPERA result.
Resumo:
A first result of the search for nu(mu)->nu(e) oscillations in the OPERA experiment, located at the Gran Sasso Underground Laboratory, is presented. The experiment looked for the appearance of nu(e) in the CNGS neutrino beam using the data collected in 2008 and 2009. Data are compatible with the non-oscillation hypothesis in the three-flavour mixing model. A further analysis of the same data constrains the non-standard oscillation parameters theta(new) and Delta m(new)(2) suggested by the LSND and MiniBooNE experiments. For large Delta m(new)(2) values (>0.1 eV(2)), the OPERA 90% C.L. upper limit on sin(2)(2 theta(new)) based on a Bayesian statistical method reaches the value 7.2 x 10(-3).
Resumo:
The OPERA experiment is searching for νμ → ντ oscillations in appearance mode, i.e., via the direct detection of τ leptons in ντ charged-current interactions. The evidence of νμ → ντ appearance has been previously reported with three ντ candidate events using a sub-sample of data from the 2008–2012 runs. We report here a fourth ντ candidate event, with the τ decaying into a hadron, found after adding the 2012 run events without any muon in the final state to the data sample. Given the number of analyzed events and the low background, νμ → ντ oscillations are established with a significance of 4.2σ.
Resumo:
The OPERA experiment is designed to search for ν μ →ν τ oscillations in appearance mode, i.e., through the direct observation of the τ lepton in ν τ -charged current interactions. The experiment has taken data for five years, since 2008, with the CERN Neutrino to Gran Sasso beam. Previously, two ν τ candidates with a τ decaying into hadrons were observed in a subsample of data of the 2008–2011 runs. Here we report the observation of a third ν τ candidate in the τ − →μ − decay channel coming from the analysis of a subsample of the 2012 run. Taking into account the estimated background, the absence of ν μ →ν τ oscillations is excluded at the 3.4 σ level.
Resumo:
The OPERA experiment was designed to search for νµ → ντ oscillations in appearance mode, i.e. by detecting the τ leptons produced in charged current ντ interactions. The experiment took data from 2008 to 2012 in the CERN Neutrinos to Gran Sasso beam. The observation of the νµ → ντ appearance, achieved with four candidate events in a subsample of the data, was previously reported. In this Letter, a fifth ντ candidate event, found in an enlarged data sample, is described. Together with a further reduction of the expected background, the candidate events detected so far allow us to assess the discovery of νµ → ντ oscillations in appearance mode with a significance larger than 5 σ.
Resumo:
The OPERA experiment, exposed to the CERN to Gran Sasso νµ beam, collected data from 2008 to 2012. Four oscillated ντ Charged Current interaction candidates have been detected in appearance mode, which are consistent with νµ → ντ oscillations at the atmospheric ∆m^2 within the “standard” three-neutrino framework. In this paper, the OPERA ντ appearance results are used to derive limits on the mixing parameters of a massive sterile neutrino.