49 resultados para OLIGODEOXYNUCLEOTIDE
Resumo:
Background: The purpose of this study was to assess the efficacy and safety of ISIS 3521, an antisense phosphorothioate oligonucleotide to protein kinase C in patients with relapsed low-grade non-Hodgkin's lymphoma (NHL). Patients and methods: Twenty-six patients received ISIS 3521 (2 mg/kg/day) as a continuous infusion over 21 days of each 28-day cycle. Results: The median age of the patients was 53 years (range 37–77). Histological subtypes were low-grade follicular lymphoma (n=22) and B-cell small lymphocytic lymphoma (n=4). Twenty-one (81%) had stage III/IV disease. The median number of previous lines of chemotherapy was two (range one to six). A total of 87 cycles of ISIS 3521 were administered. Twenty-three patients were assessable for response. Three patients achieved a partial response. No complete responses were observed. Ten patients had stable disease. Grade 3–4 toxicity was as follows: neutropenia (3.8%) and thrombocytopenia (26.9%). Conclusions: ISIS 3521 has demonstrated anti-tumour activity in patients with relapsed low-grade NHL. There may be a potential role for this agent in combination with conventional chemotherapy for advanced low-grade lymphoma, and further trials are warranted.
Resumo:
Synthesis and characterization of monodisperse oligonucleotide-polypeptide di- and triblock copolymers are described. These block copolymers are promising building blocks for the formation of defined structures by sequential DNA self-assembly. The oligonucleotide sequences (ODN, 46 bases) obtained from standard solid phase synthesis were designed to form four-arm DNA junctions. The hybridization of the four single stranded oligonucleotides at room temperature to a stable four-arm junction is selective and quantitative. The junctions exhibit good thermal stability as proven by polyacrylamide gel electrophoresis (PAGE) and UV analysis. The second block consists of monodisperse elastin-like polypeptides (ELPs) with a pentapeptide repeat unit of (Val-Pro-Gly-Val-Gly) synthesized by genetic engineering. ODN-ELP diblock copolymers were obtained either by thiol coupling or by activated ester chemistry. Taking advantage of the endgroup control of both components (ODN, ELP), combination of the two different synthetic approaches leads to the synthesis of ODN-ELP-ODN triblock copolymers. Dynamic light scattering measurements of the single components and the synthesized diblock copolymers reveal their monodispersity. Hybridization of four ODN-ELP diblock copolymers carrying the four junction sequences shows quantitative self-assembly. In conclusion, this work provides the first example of the synthesis of perfectly defined ODN-ELP block copolymers and their potential use in DNA self-assembly.
Resumo:
Large quantities of pure synthetic oligodeoxynucleotides (ODNs) are important for preclinical research, drug development, and biological studies. These ODNs are synthesized on an automated synthesizer. It is inevitable that the crude ODN product contains failure sequences which are not easily removed because they have the same properties as the full length ODNs. Current ODN purification methods such as polyacrylamide gel electrophoresis (PAGE), reversed-phase high performance liquid chromatography (RP HPLC), anion exchange HPLC, and affinity purification can remove those impurities. However, they are not suitable for large scale purification due to the expensive aspects associated with instrumentation, solvent demand, and high labor costs. To solve these problems, two non-chromatographic ODN purification methods have been developed. In the first method, the full-length ODN was tagged with the phosphoramidite containing a methacrylamide group and a cleavable linker while the failure sequences were not. The full-length ODN was incorporated into a polymer through radical acrylamide polymerization whereas failure sequences and other impurities were removed by washing. Pure full-length ODN was obtained by cleaving it from the polymer. In the second method, the failure sequences were capped by a methacrylated phosphoramidite in each synthetic cycle. During purification, the failure sequences were separated from the full-length ODN by radical acrylamide polymerization. The full-length ODN was obtained via water extraction. For both methods, excellent purification yields were achieved and the purity of ODNs was very satisfactory. Thus, this new technology is expected to be beneficial for large scale ODN purification.
Resumo:
10.1002/hlca.200390311.abs A series of oligonucleotides containing (5′S)-5′-C-butyl- and (5′S)-5′-C-isopentyl-substituted 2′-deoxyribonucleosides were designed, prepared, and characterized with the intention to explore alkyl-zipper formation between opposing alkyl chains across the minor groove of oligonucleotide duplexes as a means to modulate DNA-duplex stability. From four possible arrangements of the alkyl groups that differ in the density of packing of the alkyl chains across the minor groove, three (duplex types I–III, Fig. 2) could experimentally be realized and their duplex-forming properties analyzed by UV-melting curves, CD spectroscopy, and isothermal titration calorimetry (ITC), as well as by molecular modeling. The results show that all arrangements of alkyl residues within the minor groove of DNA are thermally destabilizing by 1.5–3°/modification in Tm. We found that, within the proposed duplexes with more loosely packed alkyl groups (type-III duplexes), accommodation of alkyl residues without extended distorsion of the helical parameters of B-DNA is possible but does not lead to higher thermodynamic stability. The more densely packed and more unevenly distributed arrangement (type-II duplexes) seems to suffer from ecliptic positioning of opposite alkyl groups, which might account for a systematic negative contribution to stability due to steric interactions. The decreased stability in the type-III duplexes described here may be due either to missing hydrophobic interactions of the alkyl groups (not bulky enough to make close contacts), or to an overcompensation of favorable alkyl-zipper formation presumably by loss of structured H2O in the minor groove.
Resumo:
By patch-clamp analysis, we have shown that chronic, intermittent mechanical strain (CMS) increases the activity of stretch-activated cation channels of osteoblast-like UMR-106.01 cells. CMS also produces a swelling-activated whole-cell conductance (Gm) regulated by varying strain levels. We questioned whether the swelling-activated conductance was produced by stretch-activated cation channel activity. We have identified a gene involved in the increase in conductance by using antisense oligodeoxynucleotides (ODN) derived from the alpha 1-subunit genes of calcium channels found in UMR-106.01 cells (alpha1S, alpha1C, and alpha1D). We demonstrate that alpha 1C antisense ODNs abolish the increase in Gm in response to hypotonic swelling following CMS. Antisense ODNs to alpha1S and alpha1D, sense ODNs to alpha1C, and sham permeabilization had no effect on the conductance increase. In addition, during cell-attached patch-clamp studies, antisense ODNs to alpha1c completely blocked the swelling-activated and stretch-activated nonselective cation channel response to strain. Antisense ODNs to alpha1S treatment produced no effect on either swelling-activated or stretch-activated cation channel activity. There were differences in the stretch-activated and swelling-activated cation channel activity, but whether they represent different channels could not be determined from our data. Our data indicate that the alpha1C gene product is involved in the Gm and the activation of the swelling-activated cation channels induced by CMS. The possibility that swelling-activated cation channel genes are members of the calcium channel superfamily exists, but if alpha1c is not the swelling-activated cation channel itself, then its expression is required for induction of swelling-activated cation channel activity by CMS.
Resumo:
Strains of Mycobacterium smegmatis, a mycobacterium which shares genetic sequences, grows more rapidly, and is nonpathogenic in man as compared with Mycobacterium tuberculosis, were utilized for the initial development of new antimycobacterial therapy. Drug-resistant strains of M. smegmatis which are known to arise in a manner identical to the emergence of drug-resistant strains of M. tuberculosis were isolated and utilized as models for the antimycobacterial activities of modified and unmodified oligodeoxynucleotide phosphorothioates in broth cultures. Under normal conditions, oligodeoxynucleotide phosphorothioates do not enter mycobacteria, and several strategies were successfully utilized to afford entry of oligonucleotides into the mycobacterial cells. One involved the presence of very low levels of ethambutol, which enables the entry of oligonucleotides into mycobacteria because of its induced alterations in the cell wall, and another involved the utilization of oligonucleotides covalently attached to a D-cycloserine molecule, whereby entry into the mycobacterial cell is achieved by a receptor-mediated process. Another low molecular weight, covalently attached ligand that enabled the entry and subsequent antimycobacterial activities of oligodeoxynucleotide phosphorothioates in the absence of a cell wall modifying reagent was biotin. Significant sequence-specific growth inhibition of wild-type, as well as of drug-resistant, M. smegmatis was obtained by modified oligonucleotides complementary in sequence to a specific region of the mycobacterium aspartokinase (ask) gene when utilized in combinations with ethambutol (as compared to ethambutol alone) or as D-cycloserine or biotin covalent adducts without the presence of any other cytotoxic or cytostatic agent.
Resumo:
The effects of a 15-mer antisense c-myc phosphorothioate modified oligodeoxynucleotide (OdN) upon the volume-sensitive Cl- current in ROS 17/2.8 cells were investigated using the whole-cell configuration of the patch clamp technique. At 5 microM, the OdN reversibly inhibited the current in a voltage- and time-dependent fashion. This was evident from the reduction in the peak current as assessed at the termination of each voltage pulse and an acceleration of the time-dependent inactivation present at strongly depolarised potentials. The kinetic modifications induced by the OdN suggest it may act by blocking the pore of open channels when the cell membrane potential is depolarised.
Resumo:
The overexpression of epidermal growth factor receptor (EGFr) has been implicated as a causative factor and a poor prognostic marker in a number of carcinomas. Therefore, strategies that down-regulate EGFr expression may be therapeutically useful. We designed antisense ODNs complementary to the initiation codon region of the EGFr mRNA and evaluated their efficacy in several tumor-derived cells, including the A431 cell line that express amplified levels of EGFr. A 15-mer phosphorothioate (PS) antisense ODN (erbB1AS15) induced a concentration-dependent reduction in proliferation that was accompanied by a change in the morphology of A431 cells into more tightly clustered and discrete colonies. A 15-mer sense (PS) control oligodeoxynucleotide (ODN) and a phosphodiester (PO) version of erbB1AS15 had little or no effect on cell number of morphology, and erbB1AS15 (PS) did not induce these effects in control cell lines expressing lower levels of EGFr. The effects of erbB1AS15 (PS) on A431 cells were not mediated by a true antisense mechanism in that there was no reduction in the level of EGFr mRNA or protein over a 24-hr period, as determined by Northern and Western blotting, respectively. However, autophosphorylation of the receptor was significantly reduced by erbB1AS15 (PS) and not by control ODNs. The results of further studies suggested that this effect was mediated by a direct, dose-dependent inhibition of the EGFr tyrosine kinase enzyme and was not due to impairment of either ligand-binding or receptor dimerization. These data suggest that erbB1AS15 (PS) can inhibit proliferation and alter the morphology of A431 cells by a sequence-selective, but nonantisense mechanism affecting receptor tyrosine kinase activity.
Resumo:
Oligodeoxynucleotides (ODNs) containing latent electrophilic groups can be highly useful in antisense drug development and many other applications such as chemical biology and medicine, where covalent cross-linking of ODNs with mRNA, protein and ODN is required. However, such ODN analogues cannot be synthesized using traditional technologies due to the strongly nucleophilic conditions used in traditional deprotection/cleavage process. To solve this long lasting and highly challenging problem in nucleic acid chemistry, I used the 1,3-dithian-2-yl-methoxycarbonyl (Dmoc) function to protect the exo-amino groups on the nucleobases dA, dC and dG, and to design the linker between the nascent ODN and solid support. These protecting groups and linker are completely stable under all ODN synthesis conditions, but can be readily cleaved under non-nucleophilic and nearly neutral conditions. As a result, the new ODN synthesis technology is universally useful for the synthesis of electrophilic ODNs. The dissertation is mainly comprised of two portions. In the first portion, the development of the Dmoc-based linker for ODN synthesis will be described. The construction of the dT-Dmoc-linker required a total of seven steps to synthesize. The linker was then anchored to the solid support―controlled pore glass (CPG). In the second portion, the syntheses of Dmoc-protected phosphoramidites ODN synthesis monomers including Dmoc-dC-amidite, Dmoc-dA-amidite, Dmoc-dG-amidite are described. The protection of dC and dA with 1,3-dithian-2-yl-methyl 4-nitrophenyl carbonate proceeded smoothly giving Dmoc-dC and Dmoc-dA in good yields. However, when the same acylation procedure was applied for the synthesis of Dmoc-dG, very low yield was obtained. This problem was later solved using a highly innovative and environmentally benign procedure, which is expected to be widely useful for the acylation of the exo-amino groups on nucleoside bases. The reactions to convert the Dmoc-protected nucleosides to phosphoramidite monomers proceeded smoothly with high yields. Using the Dmoc phosphoramidite monomers dA, dC, dG and the commercially available dT, and the Dmoc linker, four ODN sequences were synthesized. In all cases, excellent coupling yields were obtained. ODN deprotection/cleavage was achieved by using non-nucleophilic oxidative conditions. The new technology is predicted to be universally useful for the synthesis of ODNs containing one or more electrophilic functionalities.
Resumo:
Chlamydia pneumoniae causes a range of respiratory infections including bronchitis, pharyngitis and pneumonia. Infection has also been implicated in exacerbation/initiation of asthma and chronic obstructive pulmonary disease (COPD) and may play a role in atherosclerosis and Alzheimer's disease. We have used a mouse model of Chlamydia respiratory infection to determine the effectiveness of intranasal (IN) and transcutaneous immunization (TCI) to prevent Chlamydia lung infection. Female BALB/c mice were immunized with chlamydial major outer membrane protein (MOMP) mixed with cholera toxin and CpG oligodeoxynucleotide adjuvants by either the IN or TCI routes. Serum and bronchoalveolar lavage (BAL) were collected for antibody analysis. Mononuclear cells from lung-draining lymph nodes were stimulated in vitro with MOMP and cytokine mRNA production determined by real time PCR. Animals were challenged with live Chlamydia and weighed daily following challenge. At day 10 (the peak of infection) animals were sacrificed and the numbers of recoverable Chlamydia in lungs determined by real time PCR. MOMP-specific antibody-secreting cells in lung tissues were also determined at day 10 post-infection. Both IN and TCI protected animals against weight loss compared to non-immunized controls with both immunized groups gaining weight by day 10-post challenge while controls had lost 6% of body weight. Both immunization protocols induced MOMP-specific IgG in serum and BAL while only IN immunization induced MOMP-specific IgA in BAL. Both immunization routes resulted in high numbers of MOMP-specific antibody-secreting cells in lung tissues (IN > TCI). Following in vitro re-stimulation of lung-draining lymph node cells with MOMP; IFNγ mRNA increased 20-fold in cells from IN immunized animals (compared to non-immunized controls) while IFNγ levels increased 6- to 7-fold in TCI animals. Ten days post challenge non-immunized animals had >7000 IFU in their lungs, IN immunized animals <50 IFU and TCI immunized animals <1500 IFU. Thus, both intranasal and transcutaneous immunization protected mice against respiratory challenge with Chlamydia. The best protection was obtained following IN immunization and correlated with IFNγ production by mononuclear cells in lung-draining LN and MOMP-specific IgA in BAL.
Resumo:
Chlamydia is responsible for a wide range of diseases with enormous global economic and health burden. As the majority of chlamydial infections are asymptomatic, a vaccine has greatest potential to reduce infection and disease prevalence. Protective immunity against Chlamydia requires the induction of a mucosal immune response, ideally, at the multiple sites in the body where an infection can be established. Mucosal immunity is most effectively stimulated by targeting vaccination to the epithelium, which is best accomplished by direct vaccine application to mucosal surfaces rather than by injection. The efficacy of needle-free vaccines however is reliant on a powerful adjuvant to overcome mucosal tolerance. As very few adjuvants have proven able to elicit mucosal immunity without harmful side effects, there is a need to develop non-toxic adjuvants or safer ways to administered pre-existing toxic adjuvants. In the present study we investigated the novel non-toxic mucosal adjuvant CTA1-DD. The immunogenicity of CTA1-DD was compared to our "gold-standard" mucosal adjuvant combination of cholera toxin (CT) and cytosine-phosphate-guanosine oligodeoxynucleotide (CpG-ODN). We also utilised different needle-free immunisation routes, intranasal (IN), sublingual (SL) and transcutaneous (TC), to stimulate the induction of immunity at multiple mucosal surfaces in the body where Chlamydia are known to infect. Moreover, administering each adjuvant by different routes may also limit the toxicity of the CT/CpG adjuvant, currently restricted from use in humans. Mice were immunised with either adjuvant together with the chlamydial major outer membrane protein (MOMP) to evaluate vaccine safety and quantify the induction of antigen-specific mucosal immune responses. The level of protection against infection and disease was also assessed in vaccinated animals following a live genital or respiratory tract infectious challenge. The non-toxic CTA1-DD was found to be safe and immunogenic when delivered via the IN route in mice, inducing a comparable mucosal response and level of protective immunity against chlamydial challenge to its toxic CT/CpG counterpart administered by the same route. The utilisation of different routes of immunisation strongly influenced the distribution of antigen-specific responses to distant mucosal surfaces and also abrogated the toxicity of CT/CpG. The CT/CpG-adjuvanted vaccine was safe when administered by the SL and TC routes and conferred partial immunity against infection and pathology in both challenge models. This protection was attributed to the induction of antigen-specific pro-inflammatory cellular responses in the lymph nodes regional to the site of infection and rather than in the spleen. Development of non-toxic adjuvants and effective ways to reduce the side effects of toxic adjuvants has profound implications for vaccine development, particularly against mucosal pathogens like Chlamydia. Interestingly, we also identified two contrasting vaccines in both infection models capable of preventing infection or pathology exclusively. This indicated that the development of pathology following an infection of vaccinated animals was independent of bacterial load and was instead the result of immunopathology, potentially driven by the adaptive immune response generated following immunisation. While both vaccines expressed high levels of interleukin (IL)-17 cytokines, the pathology protected group displayed significantly reduced expression of corresponding IL-17 receptors and hence an inhibition of signalling. This indicated that the balance of IL-17-mediated responses defines the degree of protection against infection and tissue damage generated following vaccination. This study has enabled us to better understand the immune basis of pathology and protection, necessary to design more effective vaccines.
Resumo:
Chlamydia pneumoniae is responsible for up to 20% of community acquired pneumonia and can exacerbate chronic inflammatory diseases. As the majority of infections are either mild or asymptomatic, a vaccine is recognized to have the greatest potential to reduce infection and disease prevalence. Using the C. muridarum mouse model of infection, we immunized animals via the intranasal (IN), sublingual (SL) or transcutaneous (TC) routes, with recombinant chlamydial major outer membrane protein (MOMP) combined with adjuvants CTA1-DD or a combination of cholera toxin/CpG-oligodeoxynucleotide (CT/CpG). Vaccinated animals were challenged IN with C. muridarum and protection against infection and pathology was assessed. SL and TC immunization with MOMP and CT/CpG was the most protective, significantly reducing chlamydial burden in the lungs and preventing weight loss, which was similar to the protection induced by a previous live infection. Unlike a previous infection however, these vaccinations also provided almost complete protection against fibrotic scarring in the lungs. Protection against infection was associated with antigen-specific production of IFNγ, TNFα and IL-17 by splenocytes, however, protection against both infection and pathology required the induction of a similar pro-inflammatory response in the respiratory tract draining lymph nodes. Interestingly, we also identified two contrasting vaccinations capable of preventing infection or pathology individually. Animals IN immunized with MOMP and either adjuvant were protected from infection, but not the pathology. Conversely, animals TC immunized with MOMP and CTA1-DD were protected from pathology, even though the chlamydial burden in this group was equivalent to the unimmunized controls. This suggests that the development of pathology following an IN infection of vaccinated animals was independent of bacterial load and may have been driven instead by the adaptive immune response generated following immunization. This identifies a disconnection between the control of infection and the development of pathology, which may influence the design of future vaccines.
Resumo:
Synthetic CpG containing oligodeoxynucleotide Toll like receptor-9 agonist (CpG DNA) activates innate immunity and can stimulate antigen presentation against numerous intracellular pathogens. It was observed that Salmonella Typhimurium growth can be inhibited by the CpG DNA treatment in the murine dendritic cells. This inhibitory effect was mediated by an increased reactive oxygen species production. In addition, it was noted that CpG DNA treatment of dendritic cells during Salmonella infection leads to an increased antigen presentation. Further this increased antigen presentation was dependent on the enhanced reactive oxygen species production elicited by Toll like receptor-9 activation. With the help of an exogenous antigen it was shown that Salmonella antigen could also be cross-presented in a better way by CpG induction. These data collectively indicate that CpG DNA enhance the ability of murine dendritic cells to contain the growth of virulent Salmonella through reactive oxygen species dependent killing.
Resumo:
Oligonucleotide from SARS virus was selected as a target molecule in the paper. The noncovalent complexes of ginsenosides with the target molecule were investigated by electrospray ionization mass spectrometry. The effects of experimental conditions were examined firstly on the formation of noncovalent complexes. Based on the optimized experimental conditions, the interaction of different ginsenosides with the target molecule was researched, finding that the interaction orders are relative with the structure of aglycons, the length and terminal sugar types of saccharide chains in the ginsenosides. There are certain rules for the interaction between the ginsenosides and DNA target molecule. For different type ginsenosides, the interaction intensity takes the orders 20-S-protopanaxatriol > 20-S-protopanaxadiol, and panaxatriol ginsenosides > panaxadiol ginsenosides. For the ginsenosides with the same type aglycone, tri-saccharide chain > di-saccharide chain > tetra-saccharide chain and single-saccharide chain > panaxatriol. For the ginsenosides with the same tetra-saccharide chain, the ginsenosides with smaller molecule masses > the ginsenosides with larger molecule masses.
Resumo:
The effects of oligodeoxynucleotide (ODN) on the conformation of basic fibroblast growth factor (bFGF) were studied by spectral method. The results showed that ODN destabilized the protein.