11 resultados para OBIA


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Overrecentdecades,remotesensinghasemergedasaneffectivetoolforimprov- ing agriculture productivity. In particular, many works have dealt with the problem of identifying characteristics or phenomena of crops and orchards on different scales using remote sensed images. Since the natural processes are scale dependent and most of them are hierarchically structured, the determination of optimal study scales is mandatory in understanding these processes and their interactions. The concept of multi-scale/multi- resolution inherent to OBIA methodologies allows the scale problem to be dealt with. But for that multi-scale and hierarchical segmentation algorithms are required. The question that remains unsolved is to determine the suitable scale segmentation that allows different objects and phenomena to be characterized in a single image. In this work, an adaptation of the Simple Linear Iterative Clustering (SLIC) algorithm to perform a multi-scale hierarchi- cal segmentation of satellite images is proposed. The selection of the optimal multi-scale segmentation for different regions of the image is carried out by evaluating the intra- variability and inter-heterogeneity of the regions obtained on each scale with respect to the parent-regions defined by the coarsest scale. To achieve this goal, an objective function, that combines weighted variance and the global Moran index, has been used. Two different kinds of experiment have been carried out, generating the number of regions on each scale through linear and dyadic approaches. This methodology has allowed, on the one hand, the detection of objects on different scales and, on the other hand, to represent them all in a sin- gle image. Altogether, the procedure provides the user with a better comprehension of the land cover, the objects on it and the phenomena occurring.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Providing accurate maps of coral reefs where the spatial scale and labels of the mapped features correspond to map units appropriate for examining biological and geomorphic structures and processes is a major challenge for remote sensing. The objective of this work is to assess the accuracy and relevance of the process used to derive geomorphic zone and benthic community zone maps for three western Pacific coral reefs produced from multi-scale, object-based image analysis (OBIA) of high-spatial-resolution multi-spectral images, guided by field survey data. Three Quickbird-2 multi-spectral data sets from reefs in Australia, Palau and Fiji and georeferenced field photographs were used in a multi-scale segmentation and object-based image classification to map geomorphic zones and benthic community zones. A per-pixel approach was also tested for mapping benthic community zones. Validation of the maps and comparison to past approaches indicated the multi-scale OBIA process enabled field data, operator field experience and a conceptual hierarchical model of the coral reef environment to be linked to provide output maps at geomorphic zone and benthic community scales on coral reefs. The OBIA mapping accuracies were comparable with previously published work using other methods; however, the classes mapped were matched to a predetermined set of features on the reef.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the last decade, Object Based Image Analysis (OBIA) has been accepted as an effective method for processing high spatial resolution multiband images. This image analysis method is an approach that starts with the segmentation of the image. Image segmentation in general is a procedure to partition an image into homogenous groups (segments). In practice, visual interpretation is often used to assess the quality of segmentation and the analysis relies on the experience of an analyst. In an effort to address the issue, in this study, we evaluate several seed selection strategies for an automatic image segmentation methodology based on a seeded region growing-merging approach. In order to evaluate the segmentation quality, segments were subjected to spatial autocorrelation analysis using Moran's I index and intra-segment variance analysis. We apply the algorithm to image segmentation using an aerial multiband image.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymorphisms in the prion protein gene are known to affect prion disease incubation times and susceptibility in humans and mice. However, studies with inbred lines of mice show that large differences in incubation times occur even with the same amino acid sequence of the prion protein, suggesting that other genes may contribute to the observed variation. To identify these loci we analyzed 1,009 animals from an F2 intercross between two strains of mice, CAST/Ei and NZW/OlaHSd, with significantly different incubation periods when challenged with RML scrapie prions. Interval mapping identified three highly significantly linked regions on chromosomes 2, 11, and 12; composite interval mapping suggests that each of these regions includes multiple linked quantitative trait loci. Suggestive evidence for linkage was obtained on chromosomes 6 and 7. The sequence conservation between the mouse and human genome suggests that identification of mouse prion susceptibility alleles may have direct relevance to understanding human susceptibility to bovine spongiform encephalopathy (BSE) infection, as well as identifying key factors in the molecular pathways of prion pathogenesis. However, the demonstration of other major genetic effects on incubation period suggests the need for extreme caution in interpreting estimates of variant Creutzfeldt–Jakob disease epidemic size utilizing existing epidemiological models.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An object based image analysis approach (OBIA) was used to create a habitat map of the Lizard Reef. Briefly, georeferenced dive and snorkel photo-transect surveys were conducted at different locations surrounding Lizard Island, Australia. For the surveys, a snorkeler or diver swam over the bottom at a depth of 1-2m in the lagoon, One Tree Beach and Research Station areas, and 7m depth in Watson's Bay, while taking photos of the benthos at a set height using a standard digital camera and towing a surface float GPS which was logging its track every five seconds. The camera lens provided a 1.0 m x 1.0 m footprint, at 0.5 m height above the benthos. Horizontal distance between photos was estimated by fin kicks, and corresponded to a surface distance of approximately 2.0 - 4.0 m. Approximation of coordinates of each benthic photo was done based on the photo timestamp and GPS coordinate time stamp, using GPS Photo Link Software (www.geospatialexperts.com). Coordinates of each photo were interpolated by finding the gps coordinates that were logged at a set time before and after the photo was captured. Dominant benthic or substrate cover type was assigned to each photo by placing 24 points random over each image using the Coral Point Count excel program (Kohler and Gill, 2006). Each point was then assigned a dominant cover type using a benthic cover type classification scheme containing nine first-level categories - seagrass high (>=70%), seagrass moderate (40-70%), seagrass low (<= 30%), coral, reef matrix, algae, rubble, rock and sand. Benthic cover composition summaries of each photo were generated automatically in CPCe. The resulting benthic cover data for each photo was linked to GPS coordinates, saved as an ArcMap point shapefile, and projected to Universal Transverse Mercator WGS84 Zone 56 South. The OBIA class assignment followed a hierarchical assignment based on membership rules with levels for "reef", "geomorphic zone" and "benthic community" (above).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The use of remote sensing for monitoring of submerged aquatic vegetation (SAV) in fluvial environments has been limited by the spatial and spectral resolution of available image data. The absorption of light in water also complicates the use of common image analysis methods. This paper presents the results of a study that uses very high resolution (VHR) image data, collected with a Near Infrared sensitive DSLR camera, to map the distribution of SAV species for three sites along the Desselse Nete, a lowland river in Flanders, Belgium. Plant species, including Ranunculus aquatilis L., Callitriche obtusangula Le Gall, Potamogeton natans L., Sparganium emersum L. and Potamogeton crispus L., were classified from the data using Object-Based Image Analysis (OBIA) and expert knowledge. A classification rule set based on a combination of both spectral and structural image variation (e.g. texture and shape) was developed for images from two sites. A comparison of the classifications with manually delineated ground truth maps resulted for both sites in 61% overall accuracy. Application of the rule set to a third validation image, resulted in 53% overall accuracy. These consistent results show promise for species level mapping in such biodiverse environments, but also prompt a discussion on assessment of classification accuracy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some physiochemical properties of water quality of Otamiri-oche River which runs through Imeh, Edegelem and Chokocho Communities in Etche ethnic nationality of Rivers State, Nigeria were investigated. Samples were collected in triplicate from the three different locations along the river in both rainy and dry seasons. Each sampling points is located 500m away from the successive one, and the samples were taken from the open river at the zone extending beyond the shoreline. Samples were stored in ice packs and immediately taken to the laboratory to investigate some selected physico-chemical characteristics. Also, bacteriological study was carried out on the samples. The laboratory results of the selected physico-chemical parameters when compared with the world health organization (WHO) standard showed that all the selected physico-chemical parameters were within the world health organization (WHO) permissible in both rainy and dry season except pH. For rainy season, the pH values were 5.00±0.00, 5.40 ±0.40, and 5.40± 0.30 for Imeh, Edegelem and Chokocho respectively. For the dry season, the pH values were 5.83± 0.01, 5.56±0.01, 5.90±0.01 for Imeh, Edegelem and Chokocho respectively. Also magnesium hardness exceeded the World Health Organization (WHO) permissible limit in rainy season only. The results of bacteriological study showed that all the sampling locations contained high numbers of coliform bacteria in both rainy and dry seasons. The number of coliform bacteria during rainy season was 25.00±0.00, 25.00±0.00, and 35.00±0.00 for Imeh, Edegelem and Chokocho respectively. Those of dry season were 93.00±3.55, 56.66±4.49, and 35.60±4.17 for Imeh, Edegelem and Chokocho respectively. The difference between the rainy and dry season was tested statistically using the t-test. The results of the statistical analyses showed a significant difference (p<0.05) between the rainy and dry seasons.