989 resultados para OBESE MICE
Resumo:
OBJECTIVE: To observe the chronic effects of human growth hormone (hGH) and AOD9604 (a C-terminal fragment of hGH) on body weight, energy balance, and substrate oxidation rates in obese (ob/ob) and lean C57BL/6Jmice. In vitro assays were used to confirm whether the effects of AOD9604 are mediated through the hGH receptor, and if this peptide is capable of cell proliferation via the hGH receptor. METHOD: Obese and lean mice were treated with hGH, AOD or saline for 14 days using mini-osmotic pumps. Body weight, caloric intake, resting energy expenditure, fat oxidation, glucose oxidation, and plasma glucose, insulin and glycerol were measured before and after treatment. BaF-BO3 cells transfected with the hGH receptor were used to measure in Vitro I-125-hGH receptor binding and cell proliferation. RESULTS: Both hGH and AOD significantly reduced body weight gain in obese mice. This was associated with increased in vivo fat oxidation and increased plasma glycerol levels (an index of lipolysis). Unlike hGH, however, AOD9604 did not induce hyperglycaemia or reduce insulin secretion. AOD9604 does not compete for the hGH receptor and nor does it induce cell proliferation, unlike hGH. CONCLUSIONS: Both hGH and its C-terminal fragment reduce body weight gain, increase fat oxidation, and stimulate lipolysis in obese mice, yet AOD9604 does not interact with the hGH receptor. Thus, the concept of hGH behaving as a pro-hormone is further confirmed. This data shows that fragments of hGH can act in a manner novel to traditional hGH-stimulated pathways.
Resumo:
ABSTRACT: BACKGROUND: Long-chain n-3 polyunsaturated fatty acids (LC n-3 PUFA) of marine origin exert multiple beneficial effects on health. Our previous study in mice showed that reduction of adiposity by LC n-3 PUFA was associated with both, a shift in adipose tissue metabolism and a decrease in tissue cellularity. The aim of this study was to further characterize the effects of LC n-3 PUFA on fat cell proliferation and differentiation in obese mice. METHODS: A model of inducible and reversible lipoatrophy (aP2-Cre-ERT2 PPARgammaL2/L2 mice) was used, in which the death of mature adipocytes could be achieved by a selective ablation of peroxisome proliferator-activated receptor gamma in response to i.p. injection of tamoxifen. Before the injection, obesity was induced in male mice by 8-week-feeding a corn oil-based high-fat diet (cHF) and, subsequently, mice were randomly assigned (day 0) to one of the following groups: (i) mice injected by corn-oil-vehicle only, i.e."control" mice, and fed cHF; (ii) mice injected by tamoxifen in corn oil, i.e. "mutant" mice, fed cHF; (iii) control mice fed cHF diet with 15% of dietary lipids replaced by LC n-3 PUFA concentrate (cHF+F); and (iv) mutant mice fed cHF+F. Blood and tissue samples were collected at days 14 and 42. RESULTS: Mutant mice achieved a maximum weight loss within 10 days post-injection, followed by a compensatory body weight gain, which was significantly faster in the cHF as compared with the cHF+F mutant mice. Also in control mice, body weight gain was depressed in response to dietary LC n-3 PUFA. At day 42, body weights in all groups stabilized, with no significant differences in adipocyte size between the groups, although body weight and adiposity was lower in the cHF+F as compared with the cHF mice, with a stronger effect in the mutant than in control mice. Gene expression analysis documented depression of adipocyte maturation during the reconstitution of adipose tissue in the cHF+F mutant mice. CONCLUSION: Dietary LC n-3 PUFA could reduce both hypertrophy and hyperplasia of fat cells in vivo. Results are in agreement with the involvement of fat cell turnover in control of adiposity.
Resumo:
White tea is an unfermented tea made from young shoots of Camellia sinensis protected from sunlight to avoid polyphenol degradation. Although its levels of catechins are higher than those of green tea (derived from the same plant), there are no studies addressing the relationship between this tea and obesity associated with oxidative stress.The objective of this study was to evaluate the effect of white tea on obesity and its complications using a diet induced obesity model. Forty male C57BL/6 mice were fed a high-fat diet to induce obesity (Obese group) or the same diet supplemented with 0.5% white tea extract (Obese + WTE) for 8 weeks. Adipose tissue, serum lipid profile, and oxidative stress were studied. White tea supplementation was not able to reduce food intake, body weight, or visceral adiposity. Similarly, there were no changes in cholesterol rich lipoprotein profile between the groups. A reduction in blood triacylglycerols associated with increased cecal lipids was observed in the group fed the diet supplemented with white tea. White tea supplementation also reduced oxidative stress in liver and adipose tissue. In conclusion, white tea extract supplementation (0.5%) does not influence body weight or adiposity in obese mice. Its benefits are restricted to the reduction in oxidative stress associated with obesity and improvement of hypertriacylglycerolemia.
Resumo:
The inhibitory effects of mate tea (MT), a beverage produced with leaves from Ilex paraguariensis, in vitro lipase activity and on obesity in obese mice models were examined. For the in vitro experiment, porcine and human pancreatic lipase (PL) activities were determined by measuring the rate of release of oleic acid from hydrolysis of olive oil emulsified with taurocholate, phospholipids, gum arabic, or polyvinyl alcohol. For the in vivo experiments, animals were fed with a standard diet (SD, n = 10) or high-fat diet (HFD, n = 30) for 16 weeks. After the first 8 weeks on the HFD, the animals were treated with 1 and 2 g/kg of body weight of MT. The time course of the body weight and obesity-related biochemical parameters were evaluated. The results showed that MT inhibited both porcine and human PL (half-maximal inhibitory concentration = 1.5 mg MT/ml) and induced a strong inhibition of the porcine lipase activity in the hydrolysis of substrate emulsified with taurocholate + phosphatidylcholine (PC) (83 +/- 3.8%) or PC alone (62 +/- 4.3%). MT suppressed the increases in body weight (P < 0.05) and decreased the serum triglycerides and low-density lipoprotein (LDL)-cholesterol concentrations at both doses (from 190.3 +/- 5.7 to 135.0 +/- 8.9 mg/dl, from 189.1 +/- 7.3 to 129.3 +/- 17.6 mg/dl; P < 0.05, respectively) after they had been increased by the HFD. The liver lipid content was also decreased by the diet containing MT (from 132.6 +/- 3.9 to 95.6 +/- 6.1 mg/g of tissue; P < 0.05). These results suggest that MT could be a potentially therapeutic alternative in the treatment of obesity caused by a HFD.
Resumo:
Because the potential of yerba mate (Ilex paraguariensis) has been suggested in the management of obesity, the aim of the present study was to evaluate the effects of yerba mate extract on weight loss, obesity-related biochemical parameters, and the regulation of adipose tissue gene expression in high-fat diet-induced obesity in mice. Thirty animals were randomly assigned to three groups. The mice were introduced to standard or high-fat diets. After 12 weeks on a high-fat diet, mice were randomly assigned according to the treatment (water or yerba mate extract 1.0 g/-kg). After treatment intervention, plasma concentrations of total cholesterol, high-density lipoprotein cholesterol, triglyceride, low-density lipoprotein (LDL) cholesterol, and glucose were evaluated. Adipose tissue was examined to determine the mRNA levels of several genes such as tumor necrosis factor-alpha (TNF-alpha), leptin, interleukin-6 (IL-6), C-C motif chemokine ligand-2 (CCL2), CCL receptor-2 (CCR2), angiotensinogen, plasminogen activator inhibitor-1 (PAI-1), adiponectin, resistin, peroxisome proliferator-activated receptor-gamma(2) (PPAR-gamma(2)), uncoupling protein-1 (UCP1), and PPAR-gamma coactivator-1 alpha (PGC-1 alpha). The F4/80 levels were determined by immunoblotting. We found that obese mice treated with yerba mate exhibited marked attenuation of weight gain, adiposity, a decrease in epididymal fat-pad weight, and restoration of the serum levels of cholesterol, triglycerides, LDL cholesterol, and glucose. The gene and protein expression levels were directly regulated by the high-fat diet. After treatment with yerba mate extract, we observed a recovery of the expression levels. In conclusion, our data show that yerba mate extract has potent antiobesity activity in vivo. Additionally, we observed that the treatment had a modulatory effect on the expression of several genes related to obesity.
Resumo:
Considering that inflammation contributes to obesity-induced insulin resistance and that statins have been reported to have other effects beyond cholesterol lowering, the present study aimed to it whether atorvastatin treatment has anti-inflammatory action in white adipose tissue of obese mice, consequently improving insulin sensitivity. Insulin sensitivity in vivo (by insulin tolerance test); metabolic-hormonal profile; plasma tumor necrosis factor (TNF)-alpha, interleukin (IL)-6, and adiponectin; adipose tissue immunohistochemistry; glucose transporter (GLUT) 4; adiponectin; INF-alpha; IL-1 beta; and IL-6 gene expression; and I kappa B kinase (IKK)-alpha/beta activity were assessed in 23-week-old monosodium glutamate induced obese mice untreated or treated with atorvastatin for 4 weeks. Insulin-resistant obese mice had increased plasma triglyceride, insulin, TNF-alpha, and IL-6 plasma levels. Adipose tissue of obese animals showed increased macrophage infiltration, IKK-alpha (42%, P < .05) and IKK-beta (73%, P < .05) phosphorylation, and INF-alpha and IL-6 messenger RNA (mRNA) (similar to 15%, P < .05) levels, and decreased GLUT4 mRNA and protein (30%, P < .05) levels. Atorvastatin treatment lowered cholesterol, triglyceride, insulin, INF-alpha, and IL-6 plasma levels, and restored whole-body insulin sensitivity. In adipose tissue, atorvastatin decreased macrophage in and normalized IKK-alpha/beta phosphorylation; INF-alpha, IL-6, and GLUT4 mRNA; and GLUT4 protein to control levels. The present findings demonstrate that atorvastatin has anti-inflammatory effects on adipose tissue of obese mice, which may be important to its local and whole-body insulin-sensitization effects. (C) 2010 Published by Elsevier Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Objetivo: Investigar os efeitos do exercício físico agudo com diferentes intensidades sobre a sensibilidade à insulina e a atividade da proteína quinase B/Akt no músculo esquelético de camundongos obesos. Método: Foram utilizados camundongos Swiss, divididos aleatoriamente em quatro grupos, que receberam dieta padrão (grupo controle) ou dieta hiperlipídica (grupos obeso sedentário e grupos obesos exercitados 1 e 2), por período de 12 semanas. Dois diferentes protocolos de exercício foram utilizados: natação durante 1 hora com ou sem sobrecarga de 5% da massa corporal. O teste de tolerância à insulina foi realizado para estimar a sensibilidade à insulina. E os níveis protéicos da proteína quinase B/Akt e de sua fosforilação foram determinados no músculo esquelético dos camundongos, através da técnica de Western blot. Resultado: Uma sessão de exercício físico foi capaz de inibir a resistência à insulina em decorrência de uma dieta hiperlipídica. Foi possível demonstrar um aumento na fosforilação da proteína quinase B/Akt, melhora da sinalização da insulina e redução da glicemia de jejum nos camundongos que realizaram 1 hora de natação sem sobrecarga adicional e nos camundongos que realizaram 1 hora de natação com sobrecarga adicional de 5% de sua massa corporal. Entretanto, não houve diferença significativa entre os grupos que realizaram o exercício em diferentes intensidades. Conclusão: Independente da intensidade, o exercício físico aeróbio conseguiu aumentar a sensibilidade à insulina e a fosforilação da proteína quinase B/Akt, revelando ser uma boa forma de tratamento e prevenção do diabetes tipo 2.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
It is very known that due to inflammatory processes the obesity leads to resistance to leptin, it reduces phosphorylation via JAK-2/STAT-3, which generates lower STAT-3 activity in the cell nucleus, and it leads to decrease the number of transcription of anorexigenic neurons (POMC/CART) and allowing transcription of orexigenic (NPY/AgRP). PURPOSE: The present study aimed to evaluate the effects of moderate aerobic training on food intake of obese mice through analysis of activity of hypothalamic proteins JAK-2/STAT-3. METHODS: It were used 30 Swiss mice (30 days old) divided into 3 groups: Control Group (C): sedentary animals fed with balanced diet ; Obese (OB) sedentary animals fed with high-fat diet throughout the experiment and Trained Obese (TOB) : animals fed with high fat diet throughout the experiment , kept sedentary during the first half of the experiment (8 weeks) and submitted to physical training protocol during the second half of the experiment (8 weeks). The exercise program consisted of treadmill running 1h, 5 days/week during 8 weeks at a speed equivalent to 60 % of maximum potency determined at the beginning of training period. To assess the leptin resistance, after rats were deprived of food for 6h with free access to water, they received i.p injection with leptin (2.0µl, 10-6M), after this, the chow was returned and food intake was determined by measuring the quantity and Kcal consumed at the end of 2h. The hypothalami was removed for determination of JAK-2 and STAt-3 activity. RESULTS: Our results showed that moderate physical exercise was effective in improving the JAK/STAT signaling pathway in the hypothalamus of obese animals. This has made these obese animals had reduced food intake and consequently lower body mass gain. CONCLUSION: It can be concluded that physical exercise, for restoring leptin signaling in the hypothalamus, controls the synthesis of neurons responsible for appetite and thus is an important tool in the treatment of obesity.
Resumo:
Hepatic insulin resistance is the major contributor to fasting hyperglycemia in type 2 diabetes. The protein kinase Akt plays a central role in the suppression of gluconeogenesis involving forkhead box O1 (Foxo1) and peroxisome proliferator-activated receptor gamma co-activator 1 alpha (PGC-1a), and in the control of glycogen synthesis involving the glycogen synthase kinase beta (GSK3 beta) in the liver. It has been demonstrated that endosomal adaptor protein APPL1 interacts with Akt and blocks the association of Akt with its endogenous inhibitor, tribbles-related protein 3 (TRB3), improving the action of insulin in the liver. Here, we demonstrated that chronic exercise increased the basal levels and insulin-induced Akt serine phosphorylation in the liver of diet-induced obese mice. Endurance training was able to increase APPL1 expression and the interaction between APPL1 and Akt. Conversely, training reduced both TRB3 expression and TRB3 and Akt association. The positive effects of exercise on insulin action are reinforced by our findings that showed that trained mice presented an increase in Foxo1 phosphorylation and Foxo1/PGC-1a association, which was accompanied by a reduction in gluconeogenic gene expressions (PEPCK and G6Pase). Finally, exercised animals demonstrated increased at basal and insulin-induced GSK3 beta phosphorylation levels and glycogen content at 24?h after the last session of exercise. Our findings demonstrate that exercise increases insulin action, at least in part, through the enhancement of APPL1 and the reduction of TRB3 expression in the liver of obese mice, independently of weight loss. J. Cell. Physiol. 227: 29172926, 2012. (C) 2011 Wiley Periodicals, Inc.