876 resultados para OBESE CATS
Resumo:
The effects of two hypocaloric diets were evaluated, one with 29% and the other with 42% crude protein, on the body composition, nitrogen balance (NB), and some biochemical parameters of obese cats. A total of 16 castrated adult cats were used and divided into two groups of eight animals each. Body composition, determined by dual-energy x-ray absortiometry scanning, and biochemical examinations, were performed at the onset of the experiment (M0), at 10% of weight loss (M10), and at 20% of weight loss (M20) for each cat. The weekly weight loss (0.98 ± 0.37% for group 1; 0.94 ± 0.31% for group 2) and the ingestion of metabolizable energy (33.7 ±3.3 kcal/kg/day for group 1; 35.1 ±3.20 kcal/kg/day for group 2) did not differ between the groups. The NB was different at M0 (-70 ±110 mg/kg/day for group 1 ; 340 ±110 mg/kg/day for group 2) but roughly similar at M20 (140 ±170 mg/kg/day for group 1; 330 ± 410 mg/kg/day for group 2). The lean body mass (LM) loss was significant for group 1 (P < .05) in that it decreased from 2.789 ±198 g at M0 to 2.563 ±188 g at M20; for group 2, the changes in LM were not significant (P > .05). Reduction in body fat was significant between M0 and M20 for both diets (P < .05), without differences between treatments. The ingestion of digestible protein was greater (P < .05) for group 2 (3.20 ±0.29 g/kg/day) than for group 1 (2.21 ± 0.22 g/kg/day). There was a significant correlation between NB and ingestion of digestible protein at M0 (P < .05; r = 0.65), but this correlation was not observed at M20 (P > .05; r = 0.31). A significant reduction in plasma urea was observed for group 1 and in high-density lipoprotein cholesterol for group 2, but the other biochemical parameters did not change. The diet with higher protein content prevented LM loss. However, the lower-protein diet seems to maintain animal health and improve the cats' NB after weight loss.
Resumo:
Obesity is a risk factor in the development of several respiratory diseases. Lung volumes tend to be decreased, especially expiratory reserve volume, increasing expiratory flow limitation during tidal breathing. Barometric whole-body plethysmography is a non-invasive pulmonary function test that allows a dynamic study of breathing patterns. The objective of this study was to compare pulmonary function variables between obese and non-obese cats through the use of barometric whole-body plethysmography. Nine normal-weight and six obese cats were placed in the plethysmograph chamber, and different respiratory variables were measured. There was a significant decrease in tidal volume per kilogram (P=0.003), minute volume per kilogram (P=0.001) and peak inspiratory and expiratory flows per kilogram (P=0.001) in obese cats compared with non-obese cats. Obesity failed to demonstrate a significant increase in bronchoconstriction index variable enhanced pause (Penh), as previously reported in humans and dogs. The results show that feline obesity impairs pulmonary function in cats, although a significant increase in bronchoconstriction indexes was not observed. Non-invasive barometric whole-body plethysmography can help characterise mechanical dysfunction of the airways in obese cats.
Resumo:
The effects of 2 diets with different protein contents on weight loss and subsequent maintenance was assessed in obese cats. The control group [Cc; n = 8; body condition score (BCS) = 8.6 +/- 0.2] received a diet containing 21.4 g crude protein (CP)/MJ of metabolizable energy and the high-protein group (HP; n = 7; BCS = 8.6 +/- 0.2) received a diet containing 28.4 g CP/MJ until the cats achieved a 20% controlled weight loss (0.92 +/- 0.2%/wk). After the weight loss, the cats were all fed a diet containing 28.0 g CP/MJ at an amount sufficient to maintain a constant body weight (MAIN) for 120 d. During weight loss, there was a reduction of lean mass in Cc (P < 0.01) but not in HIP cats and a reduction in leptinemia in both groups (P < 0.01). Energy intake per kilogram of metabolic weight (kg(-0.40)) to maintain the same rate of weight loss was lower (P < 0.04) in the Co (344 +/- 15.9 kJ.kg(-0.40).d(-1)) than in the HP group (377 +/- 12.4 kJ.kg-(0.40).d(-1)). During the first 40 d of MAIN, the energy requirement for weight maintenance was 398.7 +/- 9.7 kJ.kg(-0.40).d(-1) for both groups, corresponding to 73% of the NRC recommendation. The required energy gradually increased in both groups (P < 0.05) but at a faster rate in HP; therefore, the energy consumption during the last 40 d of the MAIN was higher (P < 0.001) for the HP cats (533.8 +/- 7.4 kJ.kg(-0.40).d(-1)) than for the control cats (462.3 +/- 9.6 kJ.kg(-0.40).d(-1)). These findings suggest that HIP diets allow a higher energy intake to weight loss in cats, reducing the intensity of energy restriction. Protein intake also seemed to have long-term effects so that weight maintenance required more energy after weight loss. J. Nutr, 139: 855-860, 2009.
Resumo:
The effect of dietary chromium supplementation on glucose and insulin metabolism in healthy, non-obese cats was evaluated. Thirty-two cats were randomly divided into four groups and fed experimental diets consisting of a standard diet with 0 ppb (control), 150 ppb, 300 ppb, or 600 ppb added chromium as chromium tripicolinate. Intravenous glucose tolerance, insulin tolerance and insulin sensitivity tests with minimal model analysis were performed before and after 6 weeks of feeding the test diets. During the glucose tolerance test, glucose concentrations, area under the glucose concentration-time curve, and glucose half-life (300 ppb only), were significantly lower after the trial in cats supplemented with 300 ppb and 600 ppb chromium, compared with values before the trial. Fasting glucose concentrations measured on a different day in the biochemistry profile were also significantly lower after supplementation with 600 ppb chromium. There were no significant differences in insulin concentrations or indices in either the glucose or insulin tolerance tests following chromium supplementation, nor were there any differences between groups before or after the dietary trial. Importantly, this study has shown a small but significant, dose-dependent improvement in glucose tolerance in healthy, non-obese cats supplemented with dietary chromium. Further long-term studies are warranted to determine if the addition of chromium to feline diets is advantageous. Cats most likely to benefit are those with glucose intolerance and insulin resistance from lack of exercise, obesity and old age. Healthy cats at risk of glucose intolerance and diabetes from underlying low insulin sensitivity or genetic factors may also benefit from long-term chromium supplementation. (C) 2002 ESFM and AAFP.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background: Few equations have been developed in veterinary medicine compared to human medicine to predict body composition. The present study was done to evaluate the influence of weight loss on biometry (BIO), bioimpedance analysis (BIA) and ultrasonography (US) in cats, proposing equations to estimate fat (FM) and lean (LM) body mass, as compared to dual energy x-ray absorptiometry (DXA) as the referenced method. For this were used 16 gonadectomized obese cats (8 males and 8 females) in a weight loss program. DXA, BIO, BIA and US were performed in the obese state (T0; obese animals), after 10% of weight loss (T1) and after 20% of weight loss (T2). Stepwise regression was used to analyze the relationship between the dependent variables (FM, LM) determined by DXA and the independent variables obtained by BIO, BIA and US. The better models chosen were evaluated by a simple regression analysis and means predicted vs. determined by DXA were compared to verify the accuracy of the equations. Results: The independent variables determined by BIO, BIA and US that best correlated (p < 0.005) with the dependent variables (FM and LM) were BW (body weight), TC (thoracic circumference), PC (pelvic circumference), R (resistance) and SFLT (subcutaneous fat layer thickness). Using Mallows'Cp statistics, p value and r(2), 19 equations were selected (12 for FM, 7 for LM); however, only 7 equations accurately predicted FM and one LM of cats. Conclusions: The equations with two variables are better to use because they are effective and will be an alternative method to estimate body composition in the clinical routine. For estimated lean mass the equations using body weight associated with biometrics measures can be proposed. For estimated fat mass the equations using body weight associated with bioimpedance analysis can be proposed.
Resumo:
Considering the different potential benefits of divergent fiber ingredients, the effect of 3 fiber sources on energy and macronutrient digestibility, fermentation product formation, postprandial metabolite responses, and colon histology of overweight cats (Felis catus) fed kibble diets was compared. Twenty-four healthy adult cats were assigned in a complete randomized block design to 2 groups of 12 animals, and 3 animals from each group were fed 1 of 4 of the following kibble diets: control (CO; 11.5% dietary fiber), beet pulp (BP; 26% dietary fiber), wheat bran (WB; 24% dietary fiber), and sugarcane fiber (SF; 28% dietary fiber). Digestibility was measured by the total collection of feces. After 16 d of diet adaptation and an overnight period without food, blood glucose, cholesterol, and triglyceride postprandial responses were evaluated for 16 h after continued exposure to food. On d 20, colon biopsies of the cats were collected under general anesthesia. Fiber addition reduced food energy and nutrient digestibility. Of all the fiber sources, SF had the least dietary fiber digestibility (P < 0.05), causing the largest reduction of dietary energy digestibility (P < 0.05). The greater fermentability of BP resulted in reduced fecal DM and pH, greater fecal production [g/(cat x d); as-is], and greater fecal concentration of acetate, propionate, and lactate (P < 0.05). For most fecal variables, WB was intermediate between BP and SF, and SF was similar to the control diet except for an increased fecal DM and firmer feces production for the SF diet (P < 0.05). Postprandial evaluations indicated reduced mean glucose concentration and area under the glucose curve in cats fed the SF diet (P < 0.05). Colon mucosa thickness, crypt area, lamina propria area, goblet cell area, crypt mean size, and crypt in bifurcation did not vary among the diets. According to the fiber solubility and fermentation rates, fiber sources can induce different physiological responses in cats, reduce energy digestibility, and favor glucose metabolism (SF), or improve gut health (BP).
Resumo:
This study was undertaken to assess the impact of dietary carbohydrate source on food intake, body composition, glucose tolerance, insulin sensitivity, and glucose and insulin concentrations in overweight and obese cats with reduced insulin sensitivity. Sixteen overweight and obese cats were divided into two groups and randomly allocated one of two extruded diets formulated to contain similar starch content (33%) from different cereal sources (sorghum and corn versus rice). Meal response, glucose tolerance and insulin sensitivity tests were performed before and after a 6-week weight-maintenance phase and after an additional 8-week free-access feeding phase. Dual energy x-ray absorptiometry (DEXA)-derived body composition was determined in each cat before the study and after each test phase. Food intake was measured daily and body weight measured twice weekly for the duration of the study. When compared with the sorghum/corn-based diet, cats fed the rice-based diet consumed more energy and gained more weight in response to free-access feeding. Cats fed the rice-based diet also tended to have higher glucose concentrations and insulin secretion in response to a glucose load or a test meal. We conclude that a sorghum and corn blend is a superior carbohydrate source than rice for overweight cats with glucose intolerance and reduced insulin sensitivity. Such a diet may help to minimize overeating and additional weight gain, and may also reduce the risk of developing type 2 diabetes mellitus. (C) 2004 Elsevier Inc. All rights reserved.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
There is evidence for the role of genetic and environmental factors in feline and canine diabetes. Type 2 diabetes is the most common form of diabetes in cats. Evidence for genetic factors in feline diabetes includes the overrepresentation of Burmese cats with diabetes. Environmental risk factors in domestic or Burmese cats include advancing age, obesity, male gender, neutering, drug treatment, physical inactivity, and indoor confinement. High-carbohydrate diets increase blood glucose and insulin levels and may predispose cats to obesity and diabetes. Low-carbohydrate, high-protein diets may help prevent diabetes in cats at risk such as obese cats or lean cats with underlying low insulin sensitivity. Evidence exists for a genetic basis and altered immune response in the pathogenesis of canine diabetes. Seasonal effects on the incidence of diagnosis indicate that there are environmental influences on disease progression. At least 50% of diabetic dogs have type 1 diabetes based on present evidence of immune destruction of P-cells. Epidemiological factors closely match those of the latent autoimmune diabetes of adults form of human type 1 diabetes. Extensive pancreatic damage, likely from chronic pancreatitis, causes similar to28% of canine diabetes cases. Environmental factors such as feeding of high-fat diets are potentially associated with pancreatitis and likely play a role in the development of pancreatitis in diabetic dogs. There are no published data showing that overt type 2 diabetes occurs in dogs or that obesity is a risk factor for canine diabetes. Diabetes diagnosed in a bitch during either pregnancy or diestrus is comparable to human gestational diabetes.
Resumo:
Regulation of food intake and body weight involves a complex balance between long-term control of fat mass involving insulin, adrenal steroids and leptin signals to the CNS and short-term, meal-related signals. Cats will normally limit their food intake to their energy requirements. However, in some instances cats appear unable to regulate energy balance. Our research has demonstrated that despite elevated circulating leptin levels in obese cats associated with increased fat mass, they continue to overeat and gain weight. This paradox of increased leptin concentrations in obesity has been observed in other species and is hypothesized to be a consequence of 'leptin resistance'.