1000 resultados para O-6-methylguanine
Resumo:
DNA methylating compounds are widely used as anti-cancer chemotherapeutics. The pharmaceutical critical DNA lesion induced by these drugs is O6-methylguanine (O6MeG). O6MeG is highly mutagenic and genotoxic, by triggering apoptosis. Despite the potency of O6MeG to induce cell death, the mechanism of O6MeG induced toxicity is still poorly understood. Comparing the response of mouse fibroblasts wild-type (wt) and deficient for ataxia telangiectasia mutant protein (ATM), a kinase responsible for both the recognition and the signalling of DNA double-strand breaks (DSBs), it was shown that ATM deficient cells are more sensitive to the methylating agents N-methyl-N’-nitro-N-nitrosoguanidine (MNNG), methyl methansulfonate (MMS) and the anti-cancer drug temozolomide, in both colony formation and apoptosis assays. This clearly shows that DSBs are involved in O6MeG toxicity. By inactivating the O6MeG repair enzyme O6-methylguanine-DNA methyltransferase (MGMT) with the specific inhibitor O6-benzylguanine (O6BG), ATM wt and deficient cells became more sensitive to MNNG and MMS. The opposite effect was observed when over-expressing MGMT in ATM -/- cells. The results show that O6MeG is the critical DNA lesion causing death in ATM cells following MNNG treatment, and is partially responsible for the toxicity observed following MMS treatment. Furthermore, by inhibiting the ATM kinase activity with caffeine, it was shown that the resistance of wt cells to MNNG was due to the kinase activity of ATM, as wt cells underwent more apoptosis following methylating agent treatment in the presence of caffeine. Apoptosis and caspase-3 activation were late events, starting 48h after treatment. This lends support to the model where O6MeG lesions are converted into DSBs during replication. As ATM wt and deficient cells showed similar G2/M blockage and Chk1 activation following MNNG and MMS treatment, it was concluded that the protective effect of ATM is not due to cell cycle progression control. The hypersensitivity of ATM deficient cells was accompanied by their inability to activate the anti-apoptotic NFkB pathway. In a second part of this study, it was shown that the inflammatory cytokine IL-1 up-regulates the DNA repair gene apurinic endonuclease 2 (APEX2). Up-regulation of APEX2 occurred by transcriptional regulation as it was abrogated by actinomycin D. APEX2 mRNA accumulation was accompanied by increase in APEX2 protein level. IL-1 induced APEX2 expression as well as transfection of cells with APEX2 cDNA positively correlated with a decrease in apoptosis after treatment with genotoxic agents, particularly affecting cell death after H2O2. This indicates an involvement of APEX2 in the BER pathway in cells responding to IL-1.
Resumo:
Methylation of the MGMT promoter is supposed to be a predictive and prognostic factor in glioblastoma. Whether MGMT promoter methylation correlates with tumor response to temozolomide in low-grade gliomas is less clear. Therefore, we analyzed MGMT promoter methylation by a quantitative methylation-specific PCR in 22 patients with histologically verified low-grade gliomas (WHO grade II) who were treated with temozolomide (TMZ) for tumor progression. Objective tumor response, toxicity, and LOH of microsatellite markers on chromosomes 1p and 19q were analyzed. Histological classification revealed ten oligodendrogliomas, seven oligoastrocytomas, and five astrocytomas. All patients were treated with TMZ 200 mg/m2 on days 1-5 in a 4 week cycle. The median progression-free survival was 32 months. Combined LOH 1p and 19q was found in 14 patients; one patient had LOH 1p alone and one patient LOH 19q alone. The LOH status could not be determined in two patients and was normal in the remaining four. LOH 1p and/or 19q correlated with longer time to progression but not with radiological response to TMZ. MGMT promoter methylation was detectable in 20 patients by conventional PCR and quantitative analysis revealed the methylation status was between 12 and 100%. The volumetric response to chemotherapy analyzed by MRI and time to progression correlated with the level of MGMT promoter methylation. Therefore, our retrospective case series suggests that quantitative methylation-specific PCR of the MGMT promoter predicts radiological response to chemotherapy with TMZ in WHO grade II gliomas.
Resumo:
MGMT is the primary vehicle for cellular removal of alkyl lesions from the O-6 position of guanine and the O-4 position of thymine. While key to the maintenance of genomic integrity, MGMT also removes damage induced by alkylating chemotherapies, inhibiting the efficacy of cancer treatment. Germline variants of human MGMT are well-characterized, but somatic variants found in tumors were, prior to this work, uncharacterized. We found that MGMT G132R, from a human esophageal tumor, and MGMT G156C, from a human colorectal cancer cell line, are unable to rescue methyltransferase-deficient Escherichia coli as well as wild type (WT) human MGMT after treatment with a methylating agent. Using pre-steady state kinetics, we biochemically characterized these variants as having a reduced rate constant. G132R binds DNA containing an O6-methylguanine lesion half as tightly as WT MGMT, while G156C has a 40-fold decrease in binding affinity for the same damaged DNA versus WT. Mammalian cells expressing either G132R or G156C are more sensitive to methylating agents than mammalian cells expressing WT MGMT. G132R is slightly resistant to O6-benzylguanine, an inhibitor of MGMT in clinical trials, while G156C is almost completely resistant to this inhibitor. The impared functionality of expressed variants G132R and G156C suggests that the presence of somatic variants of MGMT in a tumor could impact chemotherapeutic outcomes.
Resumo:
Laurencia terpenoid extract (LET) had been extracted from the red alga Laurencia tristicha. The study is to investigate the effects of LET supplementation on DNA oxidation and alkylation damages in mice. Forty healthy kunming mice weighing between 18g and 25g were randomly assigned into 4 groups, each consisting of ten animals. The mice were orally intubated respectively for 60 days with the designed concentrations of LET (25, 50, 100 mg/kg b.w.) for three exposed groups and salad oil (0.2 ml) for the blank group. Food and water were free for the animals. Mice in the blank and exposed groups were sacrificed after the last treatment and the blood of each animal was quickly taken for further experiments. The spontaneous and oxidized DNA damages of peripheral lymphocytes induced by H2O2 were analysed by SCGE. O-6-Methy-guanine (O-6-MeG) was measured by high performance capillary zone electrophoresis. There was no significantly difference in DNA spontaneous damage on peripheral lymphocytes of all the mice. The oxidative DNA damage in the 50 mg/Kg body weight supplement group are 286AU with the oxidation of 10 mu mol/L H2O2, significantly lower than the blank group 332AU (p<0.05). The contents of O-6-MeG in plasma in the 50mg/kg b.w. and 100mg/kg b.w. supplement group were 1.50 mu mol/L andl.88 mu mol/L, significantly lower than that of the blank group, which was 2.89 mu mol/L(p<0.05). The results from the present study indicated that the LET were rich in terpenoids and safety to be taken orally and it could improve antioxidative and decrease DNA damage effectively.
Resumo:
Low-dose hyper-radiosensitivity (HRS) is the phenomenon whereby cells exposed to radiation doses of less than approximately 0.5 Gy exhibit increased cell killing relative to that predicted from back-extrapolating high-dose survival data using a linear-quadratic model. While the exact mechanism remains to be elucidated, the involvement of several molecular repair pathways has been documented. These processes in turn are also associated with the response of cells to O6-methylguanine (O6MeG) lesions. We propose a model in which the level of low-dose cell killing is determined by the efficiency of both pre-replicative repair by the DNA repair enzyme O6-methylguanine methyltransferase (MGMT) and post-replicative repair by the DNA mismatch repair (MMR) system. We therefore hypothesized that the response of cells to low doses of radiation is dependent on the expression status of MGMT and MMR proteins. MMR (MSH2, MSH6, MLH1, PMS1, PMS2) and MGMT protein expression signatures were determined in a panel of normal (PWR1E, RWPE1) and malignant (22RV1, DU145, PC3) prostate cell lines and correlated with clonogenic survival and cell cycle analysis. PC3 and RWPE1 cells (HRS positive) were associated with MGMT and MMR proficiency, whereas HRS negative cell lines lacked expression of at least one (MGMT or MMR) protein. MGMT inactivation had no significant effect on cell survival. These results indicate a possible role for MMR-dependent processing of damage produced by low doses of radiation.
Resumo:
The management of gliomas remains challenging and requires a multidisciplinary approach that involves neurosurgeons, radiation therapists and oncologists. For patients with glioblastomas, progress has been made in recent years with the introduction of a combined modality treatment associating radiation therapy and concomitant chemotherapy with the novel alkylating agent temozolomide. This combination resulted in a significant prolongation of survival and increase in the number of patients with survival well beyond two years. Since then, interest in developing new agents in this disease has dramatically increased. In parallel, molecular markers, such as methylation status of MGMT or identification of the translocation of 1p and 19q in oligodendrogliomas have allowed to identify distinct subtypes with exquisite response to treatment or different prognosis. These developments have implications for the development of clinical trials of new potential drug treatments. In this article, we provide a review of the current management of low- and high-grade gliomas, including astrocytomas, oligodendrogliomas and glioblastomas and provide an outlook into future potential therapies.
Avaliação da expressão do gene MGMT nos tecidos normal e neoplásico de doentes com câncer colorretal
Resumo:
OBJETIVO: Avaliar a expressão tecidual do gene de reparo MGMT comparando a mucosa cólica normal e neoplásica em doentes com câncer colorretal. MÉTODOS: Foram estudados 44 portadores de adenocarcinoma colorretal confirmado por estudo histopatológico. Foram excluídos doentes suspeitos de pertencerem a famílias com câncer colorretal hereditário (HNPCC e PAF) e os portadores de câncer do reto médio e inferior submetidos a tratamento quimioradioterápico neoadjuvante. A expressão do gene MGMT foi avaliada pela técnica da reação de polimerase em cadeia em tempo real (RT-PCR). A comparação dos resultados encontrados para expressão do gene MGMT entre tecidos normais e neoplásicos foi feita pelo teste t de Student pareado, adotando-se nível de significância de 5% (p <0,05). RESULTADOS: A expressão tecidual do gene MGMT em todos os doentes foi menor no tecido neoplásico quando comparada a do tecido normal (p=0,002). CONCLUSÃO: O gene de reparo MGMT encontra-se menos expresso no tecido neoplásico quando comparados aos tecidos normais em portadores de CCR esporádico.
Resumo:
Diffusely infiltrating gliomas (WHO grade II-IV) are the most common primary brain tumours in adults. These tumours are not amenable to cure by surgery alone, so suitable biomarkers for adjuvant modalities are required to guide therapeutic decision-making. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) gene by promoter methylation has been associated with longer survival of patients with high-grade gliomas who receive alkylating chemotherapy; and molecular testing for the methylation status of the MGMT promoter sequence is regarded as among the most relevant of such markers. We have developed a primer extension-based assay adapted to formalin-fixed paraffin-embedded tissues that enables quantitative assessment of the methylation status of the MGMT promoter. The assay is very sensitive, highly reproducible, and provides valid test results in nearly 100% of cases. Our results indicate that oligodendrogliomas, empirically known to have a relatively favourable prognosis, are also the most homogeneous entities in terms of MGMT promoter methylation. Conversely, astrocytomas, which are more prone to spontaneous progression to higher grade malignancy, are significantly more heterogeneous. In addition, we show that the degree of promoter methylation correlates with the prevalence of loss of heterozygosity on chromosome arm 1p in the oligodendroglioma group, but not the astrocytoma group. Our results may have potentially important implications for clinical molecular diagnosis.
Resumo:
Background: The current proposed model of colorectal tumorigenesis is based primarily on CpG island methylator phenotype (CIMP), microsatellite instability (MSI), KRAS, BRAF, and methylation status of 0-6-Methylguanine DNA Methyltransferase (MGMT) and classifies tumors into five subgroups. The aim of this study is to validate this molecular classification and test its prognostic relevance. Methods: Three hundred two patients were included in this study. Molecular analysis was performed for five CIMP-related promoters (CRABP1, MLH1, p16INK4a, CACNA1G, NEUROG1), MGMT, MSI, KRAS, and BRAF. Methylation in at least 4 promoters or in one to three promoters was considered CIMP-high and CIMP-low (CIMP-H/L), respectively. Results: CIMP-H, CIMP-L, and CIMP-negative were found in 7.1, 43, and 49.9% cases, respectively. One hundred twenty-three tumors (41%) could not be classified into any one of the proposed molecular subgroups, including 107 CIMP-L, 14 CIMP-H, and two CIMP-negative cases. The 10 year survival rate for CIMP-high patients [22.6% (95%CI: 7-43)] was significantly lower than for CIMP-L or CIMP-negative (p = 0.0295). Only the combined analysis of BRAF and CIMP (negative versus L/H) led to distinct prognostic subgroups. Conclusion: Although CIMP status has an effect on outcome, our results underline the need for standardized definitions of low- and high-level CIMP, which clearly hinders an effective prognostic and molecular classification of colorectal cancer.
Resumo:
PURPOSE: Glioblastomas are notorious for resistance to therapy, which has been attributed to DNA-repair proficiency, a multitude of deregulated molecular pathways, and, more recently, to the particular biologic behavior of tumor stem-like cells. Here, we aimed to identify molecular profiles specific for treatment resistance to the current standard of care of concomitant chemoradiotherapy with the alkylating agent temozolomide. PATIENTS AND METHODS: Gene expression profiles of 80 glioblastomas were interrogated for associations with resistance to therapy. Patients were treated within clinical trials testing the addition of concomitant and adjuvant temozolomide to radiotherapy. RESULTS: An expression signature dominated by HOX genes, which comprises Prominin-1 (CD133), emerged as a predictor for poor survival in patients treated with concomitant chemoradiotherapy (n = 42; hazard ratio = 2.69; 95% CI, 1.38 to 5.26; P = .004). This association could be validated in an independent data set. Provocatively, the HOX cluster was reminiscent of a "self-renewal" signature (P = .008; Gene Set Enrichment Analysis) recently characterized in a mouse leukemia model. The HOX signature and EGFR expression were independent prognostic factors in multivariate analysis, adjusted for the O-6-methylguanine-DNA methyltransferase (MGMT) methylation status, a known predictive factor for benefit from temozolomide, and age. Better outcome was associated with gene clusters characterizing features of tumor-host interaction including tumor vascularization and cell adhesion, and innate immune response. CONCLUSION: This study provides first clinical evidence for the implication of a "glioma stem cell" or "self-renewal" phenotype in treatment resistance of glioblastoma. Biologic mechanisms identified here to be relevant for resistance will guide future targeted therapies and respective marker development for individualized treatment and patient selection.
Resumo:
Methylating agents are involved in carcinogenesis, and the DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) removes methyl group from O(6)-methylguanine. Genetic variation in DNA repair genes has been shown to contribute to susceptibility to squamous cell carcinoma of the head and neck (SCCHN). We hypothesize that MGMT polymorphisms are associated with risk of SCCHN. In a hospital-based case-control study of 721 patients with SCCHN and 1234 cancer-free controls frequency-matched by age, sex and ethnicity, we genotyped four MGMT polymorphisms, two in exon 3, 16195C>T and 16286C>T and two in the promoter region, 45996G>T and 46346C>A. We found that none of these polymorphisms alone had a significant effect on risk of SCCHN. However, when these four polymorphisms were evaluated together by the number of putative risk genotypes (i.e. 16195CC, 16286CC, 45996GT+TT, and 46346CA+AA), a statistically significantly increased risk of SCCHN was associated with the combined genotypes with three to four risk genotypes, compared with those with zero to two risk genotypes (adjusted odds ratio (OR)=1.27; 95% confidence interval (CI)=1.05-1.53). This increased risk was also more pronounced among young subjects (OR=1.81; 95% CI=1.11-2.96), men (OR=1.24; 95% CI=1.00-1.55), ever smokers (OR=1.25; 95%=1.01-1.56), ever drinkers (OR=1.29; 95% CI=1.04-1.60), patients with oropharyngeal cancer (OR=1.45; 95% CI=1.12-1.87), and oropharyngeal cancer with regional lymph node metastasis (OR=1.52; 95% CI=1.16-1.89). In conclusion, our results suggest that any one of MGMT variants may not have a substantial effect on SCCHN risk, but a joint effect of several MGMT variants may contribute to risk and progression of SCCHN, particularly for oropharyngeal cancer, in non-Hispanic whites.
Resumo:
BACKGROUND/AIMS O(6)-methylguanine-methyltransferase (MGMT) is an important enzyme of DNA repair. MGMT promoter methylation is detectable in a subset of pancreatic neuroendocrine neoplasms (pNEN). A subset of pNEN responds to the alkylating agent temozolomide (TMZ). We wanted to correlate MGMT promoter methylation with MGMT protein loss in pNEN, correlate the findings with clinico-pathological data and determine the role of MGMT to predict response to TMZ chemotherapy. METHODS We analysed a well-characterized collective of 141 resected pNEN with median follow-up of 83 months for MGMT protein expression and promoter methylation using methylation-specific PCR (MSP). A second collective of 10 metastasized, pretreated and progressive patients receiving TMZ was used to examine the predictive role of MGMT by determining protein expression and promoter methylation using primer extension-based quantitative PCR. RESULTS In both collectives there was no correlation between MGMT protein expression and promoter methylation. Loss of MGMT protein was associated with an adverse outcome, this prognostic value, however, was not independent from grade and stage in multivariate analysis. Promoter hypermethylation was significantly associated with response to TMZ. CONCLUSION Loss of MGMT protein expression is associated with adverse outcome in a surgical series of pNET. MGMT promoter methylation could be a predictive marker for TMZ chemotherapy in pNEN, but further, favourably prospective studies will be needed to confirm this result and before this observation can influence clinical routine.
Resumo:
Diffusely infiltrating gliomas are among the most prognostically discouraging neoplasia in human. Temozolomide (TMZ) in combination with radiotherapy is currently used for the treatment of glioblastoma (GBM) patients, but less than half of the patients respond to therapy and chemoresistance develops rapidly. Epigenetic silencing of the O(6)-methylguanine-DNA methyltransferase (MGMT) has been associated with longer survival in GBM patients treated with TMZ, but nuclear factor κB (NF-κB)-mediated survival signaling and TP53 mutations contribute significantly to TMZ resistance. Enhanced NF-κB is in part owing to downregulation of negative regulators of NF-κB activity, including Tumor necrosis factor alpha-induced protein 3 (TNFAIP3) and NF-κB inhibitor interacting RAS-like 2 (NKIRAS2). Here we provide a novel mechanism independent of TP53 and MGMT by which oncogenic miR-125b confers TMZ resistance by targeting TNFAIP3 and NKIRAS2. GBM cells overexpressing miR-125b showed increased NF-κB activity and upregulation of anti-apoptotic and cell cycle genes. This was significantly associated with resistance of GBM cells to TNFα- and TNF-related inducing ligand-induced apoptosis as well as resistance to TMZ. Conversely, overexpression of anti-miR-125b resulted in cell cycle arrest, increased apoptosis and increased sensitivity to TMZ, indicating that endogenous miR-125b is sufficient to control these processes. GBM cells overexpressing TNFAIP3 and NKIRAS2 were refractory to miR-125b-induced apoptosis resistance as well as TMZ resistance, indicating that both genes are relevant targets of miR-125b. In GBM tissues, high miR-125b expression was significantly correlated with nuclear NF-κB confirming that miR-125b is implicated in NF-κB signaling. Most remarkably, miR-125b overexpression was clearly associated with shorter overall survival of patients treated with TMZ, suggesting that this microRNA is an important predictor of response to therapy.
Resumo:
The study of colon cancer has taken advantage of the development of a model in animals in which tumors in the colon are easily induced by chemical treatment. When 1,2-dimethylhydrazine (DMH) is injected into rats tumor growth is observed in colon in preference to other tissues. This observation led us to investigate the Cytochrome P450 system in colon and its participation in the particular “colon sensitivity” to DMH. It has been established that the Cytochrome P450 system participates in the metabolism of DMH and the methyl carbonium product of Cytochrome P450 activation of DMH is responsible for DNA damage which is considered an initial step to carcinogenesis. The Cytochrome P450 system is a reasonable place to search for an explanation of this organotropic effect of DMH and we feel that the knowledge obtained from this study can take us closer to understanding the development of colonic malignancy. In our study we used a human colon cell line (LS174T) treated with DMH. The Cytochrome P450 system in the cells was manipulated with inducers of different isoforms of Cytochrome P450. The effect of DMH on colon cells was measured by determination of O-6-methylguanine which is a DNA adduct derived from the metabolism of this chemical and is associated with development of tumors. Our results support the hypothesis that Cytochrome P450 plays an important role in the damage to cellular DNA by DMH. This damage is increased after induction of Cytochromes P450 1A1 and 2E1. The effect of inhibition of the methyltransferase and glutathione systems on protection against DMH damage in colon demonstrated the importance of the protective role of the former and the lack of effective protection of the latter system. ^