998 resultados para Nylon polymers


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Polymer alloys have been used as an alternative to obtain polymeric materials with unique physical properties. Generally, the polymer mixture is incompatible, which makes it necessary to use a compatibilizer to improve the interracial adhesion. Nylon 6 (PA6) is an attractive polymer to use in engineering applications, but it has processing instability and relatively low notched impact strength. In this study, the acrylonitrile-butadiene-styrene (ABS) triblock copolymer was used as an impact modifier for PA6. Poly(methyl methacrylate-co-maleic anyhydride) (MMA-MA) and poly(methyl methacrylate-co-maleic methacrylate) (MMA-GMA) were used as compatibilizers for this blend. The morphology and impact strength of the blends were evaluated as a function of blend composition and the presence of compatibilizers. The blends compatibilized with maleated copolymer exhibited an impact strength up to 800 J/m and a morphology with ABS domains more efi8ciently dispersed. Moderate amounts of MA functionality in the compatibilizer (∼5%) and small amounts of compatibilizer in the blend (∼5%) appear sufficient to improve the impact properties and ABS dispersion. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The morphological, mechanical and rheological properties of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with MMA-MA [poly(methyl methacrylate-comaleic anhydride)] copolymers were studied. A twin screw extruder was used for melt-blended the polymers and the injection moulding process was used to mold the samples. The main focus was on nylon 6/ ABS blends compatibilized with one MMA-MA copolymer. This copolymer has PMMA segments that appear to be miscible with the styrene-acrylonitrile (SAN) phase of ABS and the anhydride groups can react with amine end groups of the nylon 6 (Ny6) to form graft copolymers at the interface between Ny6 and ABS rich phases. Tensile and impact and morphological properties were enhanced by the incorporation of this copolymer. Transmission electron microscopy (TEM) observations revealed that the ABS domains are finely dispersed in nylon 6 matrix and led to the lowest ductile-brittle transition temperatures and highest impact properties. It can be concluded that the MMA-MA copolymer is an efficient alternative for the reactive compatibilization and can be used as a compatibilizer for nylon 6/ABS blends.© 2003 Kluwer Academic Publishers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The morphologies of nylon 6/acrylonitrile-butadiene-styrene blends compatibilized with a methyl methacrylate/maleic anhydride copolymer, with 3-20 wt % maleic anhydride, were examined by transmission electron microscopy. Some staining techniques were employed for identifying the various phases. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable and coarse phase morphology and weak interfaces among the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the acrylonitrile-butadiene-styrene phase and consequently optimized Izod impact properties. © 2003 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The ductile-brittle transition temperatures were determined for compatibilized nylon 6/acrylonitrile-butadiene-styrene (PA6/ABS) copolymer blends. The compatibilizers used for those blends were methyl methacrylate-co-maleic anhydride (MMA-MAH) and MMA-co-glycidyl methacrylate (MMA-GMA). The ductile-brittle transition temperatures were found to be lower for blends compatibilized through maleate modified acrylic polymers. At room temperature, the PA6/ABS binary blend was essentially brittle whereas the ternary blends with MMA-MAH compatibilizer were supertough and showed a ductile-brittle transition temperature at -10°C. The blends compatibilized with maleated copolymer exhibited impact strengths of up to 800 J/m. However, the blends compatibilized with MMA-GMA showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nylon6 is an attractive polymer for engineering applications because it has reactive functionality through amine and carboxyl end groups that are capable of reacting. For this reason, it has been used a lot in polymeric blends. Blends of nylon6/ABS (acrylonitrile-butadiene-styrene) were produced using glycidyl methacrylate-methyl methacrylate (GMA-MMA) copolymers as compatibilizer. The binary blends were immiscible and exhibited poor mechanical properties that stemmed from the unfavorable interactions among their molecular segments. This produced an unstable coarse phase morphology and weak interfaces between the phases in the solid state. The presence of the copolymer in the blends clearly led to a more efficient dispersion of the ABS phase and consequently optimized Izod impact properties. However, the compatibilized blend showed poor toughness at room temperature and failed in a brittle manner at subambient temperatures. © 2005 Springer Science + Business Media, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nylon6/ABS binary blends are incompatible and need to be compatibilized to achieve better performance under impact tests. Poly(methyl methacrylate/maleic anhydride) (MMA-MA) is used in this work to compatibilize in situ nylon6/ABS immiscible blends. The MA functional groups, from MMA-MA copolymers, react with NH2 groups giving as products nylon molecules grafted to MMA-MA molecules. Those molecular species locate in the nylon6/ABS blend interfacial region increasing the local adhesion. MMA-MA segments are completely miscible with the SAN rich phase from the ABS. The aim of this work is to study the effects of ABS and compatibilizing agent on the melting and crystallization of nylon6/ABS blends. This effect has been investigated by differential scanning calorimetry (DSC) and dynamic mechanical thermal analysis (DMTA). Incorporation of this compatibilizer and ABS showed little effect on the melting behavior of the PA6 crystalline phase, in general. DMTA analysis confirmed the system immiscibility and showed evidence of compatibility between the two phases, nylon6 and ABS, produced by MMA-MA copolymer presence. The nylon6/ABS blend morphology, observed by transmission electron microscopy (TEM), changes significantly by the addition of the MMA-MA compatibilizer. A better dispersion of ABS in the nylon6 phase is observed. © 2004 Kluwer Academic Publishers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report that the brittle-ductile transition of polymers induced by temperature exhibits critical behavior. When t close to 0, the critical surface to surface interparticle distance (IDc) follows the scaling law: IDc proportional to t(-v) where t = 1 - T/T-BD(m) (T and T-BD(m) are the test temperature and brittle-ductile transition temperature of matrix polymer, respectively) and v = 2/D. It is clear that the scaling exponent v only depends on dimension (D). For 2, 3, and 4 dimension, v = 1, 2/3, and 1/2 respectively. The result indicates that the ID, follows the same scaling law as that of the correlation length (xi), when t approach to zero.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The isothermal and non-isothermal melt-crystallization kinetics of nylon 1212 were investigated by differential scanning calorimetry. Primary and secondary crystallization behaviors were analysed based on different approaches. The results obtained suggested that primary crystallization under isothermal conditions involves three-dimensional spherulite growth initiated by athermal nucleation, while under non-isothermal conditions, the mechanism of primary crystallization is more complex. Secondary crystallization displays a lower-dimensional crystal growth, both in the isothermal and non-isothermal processes. The crystallite morphology of nylon 1212, isothermally crystallized at various temperatures, was observed by polarized optical microscopy. The activation energies of crystallization under isothermal and non-isothermal conditions were also calculated based on different approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It was theoretically pointed out that the product of the yield stress and yield strain of matrix polymer that determined the brittle-ductile transition (BDT) of particle toughened polymers. For given particle and test condition, the higher the product of the yield stress and the yield strain of the matrix polymer, the smaller the critical interparticle distance (IDc) of the blends was. This was why the IDc (0.15 mum) of the polypropylene (PP)/rubber blends was smaller than that (0.30 mum) of the nylon 66/rubber blends, and the IDc of the nylon 66/rubber blends was smaller than that (0.60 mum) of the high density polyethylene (HDPE)/rubber blends.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The analysis of the small angle X-ray scattering (SAXS) data was based upon particle characteristic function, one-dimensional electron-density correlation function and particle distribution function. The microstructure of nylon 66 with different degrees of crystallinity was studied by means of X-ray scattering method. The radius of gyration R-g, the Porod radius R-p, the thickness of crystalline region L-c the thickness of non-crystalline region L-n, the thickness of interphase region d(tr), the long period L, the semiaxises of particles (a, a, b), the distribution of the particle sizes and the scattering invariant were calculated. The results indicate that there was a significant interphase region between the crystalline region and the non-crystalline region. and its content (W-t,W-x) should not be neglected in comparison with that of crystalline region W-c,W-x. The morphology of nylon 66 prepared by isothermal crystallization at a high temperature was mainly a lamellar structure, while the spherical crystals dominated in the quenched sample. The size of the particles in the quenched sample was smaller than that of those in the isothermally crystallized sample. and the distribution of the particle sizes in the isothermally crystallized sample was wider.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Differential scanning calorimeter (DSC), wide-angle X-ray diffraction (WAXD), small-angle X-ray scattering (SAXS), and density techniques have been used to investigate the structural parameters of the solid state of Nylon 11 annealed at different temperatures. The equilibrium heat of fusion Delta H-m(0) and equilibrium melting temperature T-m(0) were estimated to be 189.05 J g(-1) and 202.85 degrees C respectively by using the Hoffman-Weeks approach. The degree of crystallinity (W-c,W-x) ranged approximately 24-42% was calculated by WAXD and compared with those by calorimetry (W-c,W-h) and density (W-c,W-d) measurements. The radius of gyration R-g, crystalline thickness L-c, noncrystalline thickness L-a, long period L, semiaxes of the particles (a, b), electron-density difference between the crystalline and noncrystalline regions eta(c) - eta(a), and the invariant Q increased with increasing annealing temperature. The analysis of the SAXS data was based upon the particle characteristic function and the one-dimensional electron-density correlation function. An interphase region existed between the crystalline and noncrystalline region with a clear dimension of about 2 nm for semicrystalline Nylon 11. Instead of the traditional two-phase model, a three-phase model has been proposed to explain these results by means of SAXS.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nylon 10 10 crystals, which isothermally crystallized from the molten state and cold crystallized from melt-quenched samples at various temperatures, were investigated by using temperature-variable wide angle X-ray diffraction (WAXD) and small angle X-ray scattering (SAXS). No Brill transition occurred for the melt-crystallized crystals. However, this transition was easily observed for the cold-crystallized nylon 10 10, and the transition temperature is pertinent to the crystallization temperature. The sizes of these crystals was determined by SAYS and correlated with the Brill transition temperatures (T-B). It was found that the T-B had a linear relationship with the size of crystals, which was used to predict the T-B for those crystals with thick lamella and to calculate the crystal size showing T-B below room temperature. Nylon 10 10 crystal will possess the gamma form (pseudohexagonal form) rather than the a phase at room temperature if its size becomes small enough.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A comparison of radiation damage to nylon 1010 (denoted nylon-a) and nylon 1010 containing neodymium oxide (Nd2O3) (denoted nylon-b) was made by DSC, WAXD, ESR and the determination of gel fractions. The results show that radiation damage to nylon-b is delayed, and radiation damage to nylon-a is more severe than that to nylon-b, due to the protection of the fold surface of the lamellae. Furthermore, the fact that the damage begins with the fold surface of the lamellae is confirmed. (C) 1996 Elsevier Science Limited

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Noncompatibilized and compatibilized blends of nylon 1010/PP blends having five different viscosity ratios were prepared by melt extrusion. Glycidyl methacrylate-grafted-polypropylene (PP-g-GMA) was used as the compatibilizer to enbance the adhesion between the two polymers and to stabilize the blend morphology. The effect of the viscosity ratio on the morphology of nylon 1010/polypropylene blends was investigated, with primary attention to the phase-inversion behavior and the average particle size of the dispersed phase. The relationship between the mechanical properties and the phase-inversion composition was investigated as well. Investigation of the morphology of the blends by microscopy indicated that the smaller the viscosity ratio (eta(PP)/eta(PA)) the smaller was the polypropylene concentration at which the phase inversion took place and polypropylene became the continuous phase. The compatibilizer induced a sharp reduction of particle size, but did not have a major effect on the phase-inversion point. An improvement :in the mechanical properties was found when nylon 1010 provided the matrix phase. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The morphology and dynamic mechanical properties of blends of poly(ether imide) (PEI) and nylon 66 over the full composition range have been investigated. Torque changes during mixing were also measured. Lower torque values than those calculated by the log-additivity rule were obtained, resulting from the slip at the interface due to low interaction between the components. The particle size of the dispersed phase and morphology of the blends were examined by scanning electron microscopy. The composition of each phase was calculated. The blends of PEI and nylon 66 showed phase-separated structures with small spherical domains of 0.3 similar to 0.7 mu m. The glass transition temperatures (T(g)s) of the blends were shifted inward, compared with those of the homopolymers, which implied that the blends were partially miscible over a range of compositions. T-g1, corresponding to PEI-rich phase, was less affected by composition than T-g2, corresponding to nylon 66-rich phase. This indicated that the fraction of PEI mixed into nylon 66-rich phase increased with decreasing PEI content and that nylon 66 was rarely mixed into the PEI-rich phase. The effect of composition on the secondary relaxations was examined. Both T-beta, corresponding to the motion of amide groups in nylon 66, and T-gamma, corresponding to that of ether groups in PEI, were shifted to higher temperature, probably because of the formation of intermolecular interactions between the components.