825 resultados para Nylon Fiber Composite
Resumo:
The effect of diphenylmethane diisocyanate (MDI) -polyethyleneglycol (PEG) resin on the cure characteristics and mechanical properties of nitrile rubber/whole tyre eclaim-short nylon fiber composite-was studied. At a constant loading of 5 phr, the resin composition was varied. The minimum torque .,id (maximum - minimum) torque increased with isocyanate concentration. Scorch time and cure time showed a reduction on introduction of bonding agent. Properties like tensile strength, tear strength, and abrasion resistance increased with increase in MDI/PEG ratio, and these properties are higher in the longitudinal direction of fiber orientation. Compression set increased with isocyanate concentration and the resilience remain unchanged.
Resumo:
The cure characteristics and mechanical properties of short nylon fiber- styrene /whole tyre reclaim (SBR/WTR) composites with and without an interfacial bonding agent based on 4,4 diphenyl methane diisocyanate and polyethylene glycol (MDI/PEG) have been studied. An 80:40 blend of SBR/ WTR reinforced with 20 phr of short nylon fiber has been selected and the MDI/ PEG ratio has been changed from 0.67:1 to 2:1. The minimum and maximum torques increased with isocyanate concentration. The scorch time and cure time showed an initial reduction. The cure rate showed an initial improvement. Tensile strength, tear strength and abrasion resistance increased with MDI/PEG ratio, these values were higher in longitudinal direction. Resilience and compression set increased with isocyanate concentration.
Resumo:
Nanoscale silica was synthesized by precipitation method using sodium silicate and dilute hydrochloric acid under controlled conditions. The synthesized silica was characterized by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), BET adsorption and X-Ray Diffraction (XRD). The particle size of silica was calculated to be 13 nm from the XRD results and the surface area was found to be 295 m2/g by BET method. The performance of this synthesized nanosilica as a reinforcing filler in natural rubber (NR) compound was investigated. The commercial silica was used as the reference material. Nanosilica was found to be effective reinforcing filler in natural rubber compound. Filler-matrix interaction was better for nanosilica than the commercial silica. The synthesized nanosilica was used in place of conventional silica in HRH (hexamethylene tetramine, resorcinol and silica) bonding system for natural rubber and styrene butadiene rubber / Nylon 6 short fiber composites. The efficiency of HRH bonding system based on nanosilica was better. Nanosilica was also used as reinforcing filler in rubber / Nylon 6 short fiber hybrid composite. The cure, mechanical, ageing, thermal and dynamic mechanical properties of nanosilica / Nylon 6 short fiber / elastomeric hybrid composites were studied in detail. The matrices used were natural rubber (NR), nitrile rubber (NBR), styrene butadiene rubber (SBR) and chloroprene rubber (CR). Fiber loading was varied from 0 to 30 parts per hundred rubber (phr) and silica loading was varied from 0 to 9 phr. Hexa:Resorcinol:Silica (HRH) ratio was maintained as 2:2:1. HRH loading was adjusted to 16% of the fiber loading. Minimum torque, maximum torque and cure time increased with silica loading. Cure rate increased with fiber loading and decreased with silica content. The hybrid composites showed improved mechanical properties in the presence of nanosilica. Tensile strength showed a dip at 10 phr fiber loading in the case of NR and CR while it continuously increased with fiber loading in the case of NBR and SBR. The nanosilica improved the tensile strength, modulus and tear strength better than the conventional silica. Abrasion resistance and hardness were also better for the nanosilica composites. Resilience and compression set were adversely affected. Hybrid composites showed anisotropy in mechanical properties. Retention in ageing improved with fiber loading and was better for nanosilica-filled hybrid composites. The nanosilica also improved the thermal stability of the hybrid composite better than the commercial silica. All the composites underwent two-step thermal degradation. Kinetic studies showed that the degradation of all the elastomeric composites followed a first-order reaction. Dynamic mechanical analysis revealed that storage modulus (E’) and loss modulus (E”) increased with nanosiica content, fiber loading and frequency for all the composites, independent of the matrix. The highest rate of increase was registered for NBR rubber.
Resumo:
Cure characteristics and mechanical properties of short nylon fiber reinforced acrylonitrile butadiene rubber-reclaimed rubber composites were studied. Minimum torque, (maximum-minimum) torque and cure rate increased with fiber concentration. Scorch time and cure time decreased by the addition of fibers. Properties like tensile strength, tear strength, elongation at break, abrasion loss and heat build up were studied in both orientations of fibers. Tensile and tear properties were enhanced by the addition of fibers and were higher in the longitudinal direction. Heat build up increased with fiber concentration and were higher in the longitudinal direction. Abrasion resistance was improved in presence of short fibers and was higher in the longitudinal direction. Resilience increased on the introduction of fibers. Compression set was higher for blends.
Resumo:
Acrylonitrile butadiene rubber (NBR) matrix was reinforced with different levels of short nylon fiber loading. Cure characteristics and mechanical properties of composites in longitudinal and transverse directions have been studied. Cure time was reduced while processability, as indicated by the minimum torque, was marginally reduced with increase in fiber loading. Tensile and tear properties improved with fiber concentration and the values were higher in longitudinal direction of fiber orientation. Abrasion resistance, resilience and compression set were increased in presence of fibers. Elongation at break values showed a drastic drop on introduction of fibers. Heat build up was higher for composites.
Resumo:
The thesis deals with the development of short nylon fiber-reclaimed rubber/elastomer composites. Three rubbers viz, natural rubber, acrylonitrile butadiene rubber and styrene butadiene rubber were selected and were partially replaced with reclaimed rubber. The blend ratio was optimized with respect to cure characteristics and mechanical properties. Reclaimed rubber replaced 40 parts of NR and SBR and 20 parts of NBR without much affecting the properties. These blends were then reinforced with short nylon fibers. The mechanical properties of the composites were studied in detail. In all the cases the tensile strength, tear strength and the abrasion resistance increased with increase in fiber content. In the case of NRlreclaimed rubber blends, the tensile strength-fiberloading relationship was non-linear where as in the case of NBRlreclaimed rubber blends and SBRlreclaimed rubber blends the tensile strength-fiber loading relationship was linear. All the composites showed anisotropy in mechanical properties. The effect of bonding system on the composite properties was also studied with respect to cure characteristics and mechanical properties. For this, a 20 phr fiber loaded reclaimed rubber/elastomer composites were selected and the effect of MDI/PEG resin system was studied. The resin used was 5 phr and the resin ratios used were 0.67: I, 1:1, 1.5:1 and 2:1. The bonding system improved the tensile strength, tear strength and abrasion resistance. The best results are with SBRlreclaimed rubber-short nylon fiber composites. The optimized resin ratio was 1:1 MDI/PEG for all the composites.
Resumo:
This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).
Resumo:
Contractors, engineers, owners and manufacturers want to be certain that a new product or procedure will yield beneficial results when compared to the current method of construction. The following research was conducted in order to compare the performance of epoxy coated dowel bars to dowel bars of alternative shapes and materials such as stainless steel and glass fiber reinforced polymer (GFRP). Research was also done on the effect that dowel bar spacing has on the performance of concrete pavements. Four phases of this research are described in this report.
Resumo:
Department of Polymer Science and Rubber Technology, Cochin University of Science and Technology
Resumo:
The low-strength concrete is defined as a concrete where the compressive cubic strength is less than 15 MPa. Since the beginning of the last century, many low-strength concrete buildings and bridges have been built all over the world. Being short of deeper study, composite sheets are prohibited in strengthening of low-strength reinforced concrete members (CECS 146; ACI 440). Moreover, there are few relevant information about the long-term behavior and durability of strengthened RC members. This fact undoubtedly limits the use of the composite materials in the strengthening applications, therefore, it is necessary to study the behaviours of low-strength concrete elements strengthened with composite materials (FRP) for the preservation of historic constructions and innovation in the strengthening technology. Deformability is one of criteria in the design of concrete structures, and this for functionality, durability and aesthetics reasons. Civil engineer possibly encounters more deflection problems in the structural design than any other type of problem. Many materials common in structural engineering such as wood, concrete and composite materials, suffer creep; if the creep phenomenon is taken into account, checks for serviceability limit state criteria can become onerous, because the creep deformation in these materials is in the same order of magnitude as the elastic deformation. The thesis presents the results of an experimental study on the long-term behavior of low-strength reinforced concrete beams strengthened with carbon fiber composite sheets (CFRP). The work has investigated the accuracy of the long-term deflection predictions made by some analytical procedures existing in literature, as well as by the most widely used design codes (Eurocode 2, ACI-318, ACI-435).
Characterization of Short Nylon-6 Fiber/Acrylonitrile Butadiene Rubber Composite by Thermogravimetry
Resumo:
The thermal degradation of short nylon-6 fiber reinforced acrylonitrile butadiene rubber (NBR) composites with and without epoxy-based bonding agent has been studied by thermogravimetric analysis (TGA). It was found that the onset of degradation shifted from 330.5 to 336.1°C in the presence of short nylon fiber, the optimum fiber loading being 20 phr. The maximum rate of degradation of the composites was lower than that of the unfilled rubber compound, and it decreased with increase in fiber concentration. The presence of epoxy resin-based bonding agent in the virgin elastomer and the composites improved the thermal stability. Results of kinetic studies showed that the degradation of NBR and the short nylon fiber reinforced composites followed first-order kinetics.
Resumo:
The thermal properties of short Nylon-6 fiber-reinforced Styrene butadiene rubber (SBR) composites were studied by Thermogravimetric Analysis (TGA). The effect of epoxy-based bonding agent on thermal degradation of the gum and the composites was also studied. The thermal stability of the SBR was enhanced in the presence of Nylon-6 fibers and the stability of the composites increased in the presence of bonding agent. The epoxy resin did not significantly change the thermal stability of SBR gum vulcanizate. Results of kinetic studies showed that the degradation of SBR and the short nylon fiber-reinforced composites with and without bonding agents followed first-order kinetics.
Resumo:
The thesis describes the development and evaluation of epoxy resin as interfacial bonding agent for short Nylon-6 fiber elastomer composites. Epoxy resin is well known for its adhesive property. The potential use of it as interfacial bonding agent in short fiber composite is not explored yet. Three rubbers viz., acrylonitrile butadiene rubber (NBR), Neoprene rubber (CR) and styrene butadiene rubber (SBR) were selected and different fiber loading were tried. The resin concentration was optimized for each fiber loading with respect to cure characteristics and mechanical properties. Rheological characteristics and thermal degradation of the composites containing different fiber loading and different resin concentrations were studied in detail to find the effect of epoxy resin bonding system. The mechanical properties were studied in detail. The short Nylon -6 fiber improved most of the mechanical properties of all the three rubbers. Tensile strength showed a dip at 10 phr fiber loading in the case of CR while it was continuously increased with fiber loading in the case of NBR and SBR. All the composites showed anisotropy in mechanical properties. The epoxy resin is an effective bonding agent for short Nylon -6 fiber reinforced NBR and CR composites. Epoxy resin improved tensile strength, abrasion resistance and modulus of these composites. SEM studies confirmed the improved bonding of fiber and matrix in the presence of epoxy bonding agent. Epoxy resin was not effective as bonding agent in the case of short Nylon fiber- SBR composite. From the rheological studies of the composites with and without bonding agent it was observed that all the composite exhibited pseudoplasticity, which decreased with temperature. At higher shear rates all the mixes showed plug flow. SEM pictures showed that maximum orientation of fibers occured at a shear rate, just before the onset of plug flow. The presence of fiber reduced the temperature sensitivity of the flow at a given shear rate. Die swell was reduced in the presence of fiber. Shear viscosity of the composite was increased in the presence of resin. Die swell was increased in the presence of epoxy resin for composites at all shear rates. The thermal degradation of NBR and SBR composites with and without bonding agent followed single step degradation pattern. Thermal stability of the composites was improved in the presence of bonding agent. The degradation of virgin elastomer and the composites followed first order kinetics.
Resumo:
Short fiber reinforced thermoplastics have generated much interest these days since fibrous materials tend to increase both mechanical and thermal properties, such as tensile strength, flexural strength, flexural modulus, heat deflection temperature, creep resistance, and some times impact strength of thermoplastics. If the matrix and reinforcement are both based on polymers the composite are recyclable. The rheological behavior of recyclable composites based on nylon fiber reinforced polypropylene (PP) is reported in this paper. The rheological behavior was evaluated both using a capillary rheometer and a torque rheometer. The study showed that the composite became pseudoplastic with fiber content and hence fiber addition did not affect processing adversely at higher shear rates. The torque rheometer data resembled that obtained from the capillary rheometer. The energy of mixing and activation energy of mixing also did not show much variation from that of PP alone.