869 resultados para Nutrient loading


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conferencia Internacional Nutrient Dynamics of Planted Forests, Noviembre de 2012

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A considerable proportion of the dietary nutrients consumed by poultry are excreted in the manure. This becomes an important issue on free range farms, if manure and/or nutrients are not removed periodically from the range areas. The nutrients and trace elements in manure can accumulate in the soil and become toxic to vegetation, while also causing pollution of ground and surface water through leaching. Soil samples were collected from fourteen free range layer farms both on the range and control areas (with no exposure to poultry) to investigate comparative soil nutrient concentrations. Nutrient concentrations were also compared between fixed and rotational ranges and between farms having different bird densities. At each site, soil was collected from 10 sampling points, arranged diagonally in a grid across both the range and control areas. A sampling probe was used to collect soil from the top 10 cm depth. These were submitted for a standardised lab analysis (Apal Agricultural Laboratory, SA, Australia). Data was subjected to analysis of variance and means considered significant at P < 0.05.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Coral reef degradation resulting from nutrient enrichment of coastal waters is of increasing global concern. Although effects of nutrients on coral reef organisms have been demonstrated in the laboratory, there is little direct evidence of nutrient effects on coral reef biota in situ. The ENCORE experiment investigated responses of coral reef organisms and processes to controlled additions of dissolved inorganic nitrogen (N) and/or phosphorus (P) on an offshore reef(One Tree Island) at the southern end of the Great Barrier Reef, Australia. A multi-disciplinary team assessed a variety of factors focusing on nutrient dynamics and biotic responses. A controlled and replicated experiment was conducted over two years using twelve small patch reefs ponded at low tide by a coral rim. Treatments included three control reefs (no nutrient addition) and three + N reefs (NH4Cl added), three + P reefs (KH2PO4 added), and three + N + P reefs. Nutrients were added as pulses at each low tide (ca twice per day) by remotely operated units. There were two phases of nutrient additions. During the initial, low-loading phase of the experiment nutrient pulses (mean dose = 11.5 muM NH4+; 2.3 muM PO4-3) rapidly declined, reaching near-background levels (mean = 0.9 muM NH4+; 0.5 muM PO4-3) within 2-3 h. A variety of biotic processes, assessed over a year during this initial nutrient loading phase, were not significantly affected, with the exception of coral reproduction, which was affected in all nutrient treatments. In Acropora longicyathus and A. aspera, fewer successfully developed embryos were formed, and in A. longicyathus fertilization rates and lipid levels decreased. In the second, high-loading, phase of ENCORE an increased nutrient dosage (mean dose = 36.2 muM NH4+; 5.1 muM PO4-3 declining to means of 11.3 muM NH4+ and 2.4 muM PO4-3 at the end of low tide) was used for a further year, and a variety of significant biotic responses occurred. Encrusting algae incorporated virtually none of the added nutrients. Organisms containing endosymbiotic zooxanthellae (corals and giant clams) assimilated dissolved nutrients rapidly and were responsive to added nutrients. Coral mortality, not detected during the initial low-loading phase, became evident with increased nutrient dosage, particularly in Pocillopora damicornis. Nitrogen additions stunted coral growth, and phosphorus additions had a variable effect. Coral calcification rate and linear extension increased in the presence of added phosphorus but skeletal density was reduced, making corals more susceptible to breakage. Settlement of all coral larvae was reduced in nitrogen treatments, yet settlement of larvae from brooded species was enhanced in phosphorus treatments. Recruitment of stomatopods, benthic crustaceans living in coral rubble, was reduced in nitrogen and nitrogen plus phosphorus treatments. Grazing rates and reproductive effort of various fish species were not affected by the nutrient treatments. Microbial nitrogen transformations in sediments,were responsive to nutrient loading with nitrogen fixation significantly increased in phosphorus treatments and denitrification increased in all treatments to which nitrogen had been added. Rates of bioerosion and grazing showed no significant effects of added nutrients, ENCORE has shown that reef organisms and processes investigated ill situ were impacted by elevated nutrients. Impacts mere dependent on dose level, whether nitrogen and/or phosphorus mere elevated and were often species-specific. The impacts were generally sub-lethal and subtle and the treated reefs at the end of the experiment mere visually similar to control reefs. Rapid nutrient uptake indicates that nutrient concentrations alone are not adequate to assess nutrient condition of reefs. Sensitive and quantifiable biological indicators need to be developed for coral reef ecosystems. The potential bioindicators identified in ENCORE should be tested in future research on coral reef/nutrient interactions. Synergistic and cumulative effects of elevated nutrients and other environmental parameters, comparative studies of intact vs. disturbed reefs, offshore vs, inshore reefs, or the ability of a nutrient-stressed reef to respond to natural disturbances require elucidation. An expanded understanding of coral reef responses to anthropogenic impacts is necessary, particularly regarding the subtle, sub-lethal effects detected in the ENCORE studies. (C) 2001 Published by Elsevier Science Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sediment-water exchanges of oxygen, ammonium, nitrate, total dissolved nitrogen, phosphate and total dissolved phosphorus were measured by means of an in situ incubator of 7 1 volume and 700 cm2 base area. The incubations lasted for three hours and were done over a whole season on different kinds of sediments in Alfaques Bay. We present some preliminary results on: i) methodological aspects, ii) spatial and temporal variability of fluxes, and iii) estimates of contribution of benthic nutrient regeneration relative to total nutrient loading of the Bay. Oxygen uptake averaged 1700 mmo1 m-2 h-1 (range 200-3500); no differences were found between sandy and muddy sediments. The release of ammonia from the sediment averaged 70 mmo1 m-2 h-1 and was higher in muddy sediments than in sandy ones. Very low to null nitrate and nitrite fluxes and only small fluxes of organic nitrogen were detected. We conclude that ammonium release from sediment is the major path of nitrogen regeneration. Some sediments removed dissolved reactive phosphorus (DRP) from the water and released dissolved organic phosphorus (DOP). Additional manipulative experiments revealed DRP release under particular conditions (turbulence, anoxia). From these data, we estimate that at least 50% of the nitrogen requirements of phytoplankton in the area may be supplied by benthic remineralization.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Eutrophication caused by anthropogenic nutrient pollution has become one of the most severe threats to water bodies. Nutrients enter water bodies from atmospheric precipitation, industrial and domestic wastewaters and surface runoff from agricultural and forest areas. As point pollution has been significantly reduced in developed countries in recent decades, agricultural non-point sources have been increasingly identified as the largest source of nutrient loading in water bodies. In this study, Lake Säkylän Pyhäjärvi and its catchment are studied as an example of a long-term, voluntary-based, co-operative model of lake and catchment management. Lake Pyhäjärvi is located in the centre of an intensive agricultural area in southwestern Finland. More than 20 professional fishermen operate in the lake area, and the lake is used as a drinking water source and for various recreational activities. Lake Pyhäjärvi is a good example of a large and shallow lake that suffers from eutrophication and is subject to measures to improve this undesired state under changing conditions. Climate change is one of the most important challenges faced by Lake Pyhäjärvi and other water bodies. The results show that climatic variation affects the amounts of runoff and nutrient loading and their timing during the year. The findings from the study area concerning warm winters and their influences on nutrient loading are in accordance with the IPCC scenarios of future climate change. In addition to nutrient reduction measures, the restoration of food chains (biomanipulation) is a key method in water quality management. The food-web structure in Lake Pyhäjärvi has, however, become disturbed due to mild winters, short ice cover and low fish catch. Ice cover that enables winter seining is extremely important to the water quality and ecosystem of Lake Pyhäjärvi, as the vendace stock is one of the key factors affecting the food web and the state of the lake. New methods for the reduction of nutrient loading and the treatment of runoff waters from agriculture, such as sand filters, were tested in field conditions. The results confirm that the filter technique is an applicable method for nutrient reduction, but further development is needed. The ability of sand filters to absorb nutrients can be improved with nutrient binding compounds, such as lime. Long-term hydrological, chemical and biological research and monitoring data on Lake Pyhäjärvi and its catchment provide a basis for water protection measures and improve our understanding of the complicated physical, chemical and biological interactions between the terrestrial and aquatic realms. In addition to measurements carried out in field conditions, Lake Pyhäjärvi and its catchment were studied using various modelling methods. In the calibration and validation of models, long-term and wide-ranging time series data proved to be valuable. Collaboration between researchers, modellers and local water managers further improves the reliability and usefulness of models. Lake Pyhäjärvi and its catchment can also be regarded as a good research laboratory from the point of view of the Baltic Sea. The main problem in both of them is eutrophication caused by excess nutrients, and nutrient loading has to be reduced – especially from agriculture. Mitigation measures are also similar in both cases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

1. We compared the baseline phosphorus (P) concentrations inferred by diatom-P transfer functions and export coefficient models at 62 lakes in Great Britain to assess whether the techniques produce similar estimates of historical nutrient status. 2. There was a strong linear relationship between the two sets of values over the whole total P (TP) gradient (2-200 mu g TP L-1). However, a systematic bias was observed with the diatom model producing the higher values in 46 lakes (of which values differed by more than 10 mu g TP L-1 in 21). The export coefficient model gave the higher values in 10 lakes (of which the values differed by more than 10 mu g TP L-1 in only 4). 3. The difference between baseline and present-day TP concentrations was calculated to compare the extent of eutrophication inferred by the two sets of model output. There was generally poor agreement between the amounts of change estimated by the two approaches. The discrepancy in both the baseline values and the degree of change inferred by the models was greatest in the shallow and more productive sites. 4. Both approaches were applied to two lakes in the English Lake District where long-term P data exist, to assess how well the models track measured P concentrations since approximately 1850. There was good agreement between the pre-enrichment TP concentrations generated by the models. The diatom model paralleled the steeper rise in maximum soluble reactive P (SRP) more closely than the gradual increase in annual mean TP in both lakes. The export coefficient model produced a closer fit to observed annual mean TP concentrations for both sites, tracking the changes in total external nutrient loading. 5. A combined approach is recommended, with the diatom model employed to reflect the nature and timing of the in-lake response to changes in nutrient loading, and the export coefficient model used to establish the origins and extent of changes in the external load and to assess potential reduction in loading under different management scenarios. 6. However, caution must be exercised when applying these models to shallow lakes where the export coefficient model TP estimate will not include internal P loading from lake sediments and where the diatom TP inferences may over-estimate TP concentrations because of the high abundance of benthic taxa, many of which are poor indicators of trophic state.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water flow and flooding duration in wetlands influence the structure and productivity of microbial communities partly through their influence on nutrient loading. The effect of flow-regulated nutrient loads is especially relevant for microbial communities in nutrient-poor settings, where delivery controls nutrient uptake rates and the intensity of microbial interactions. We examined the effect of hydrologic history and proximity to water sources on nutrient enrichment of benthic microbial assemblages (periphyton) and on their diatom species composition, along the artificial boundaries of Taylor Slough, a historically phosphorus-depleted drainage of the Florida Everglades. Concentrations of phosphorus in periphyton declined from the wetland boundary near inflow structures to 100-m interior, with spatial and temporal variability in rates dependent on proximity to and magnitude of water flow. Phosphorus availability influenced the beta diversity of diatom assemblages, with higher values near inflow structures where resources were greatest, while interior sites and reference transects contained assemblages with constant composition of taxa considered endemic to the Everglades. This research shows how hydrologic restoration may have unintended consequences when incoming water quality is not regulated, including a replacement of distinctive microbial assemblages by ubiquitous, cosmopolitan ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Ria de Aveiro estuary-coastal lagoon system of northern Portugal is estimated to currently receive mean annual influxes of total nitrogen (N) and total phosphorus (P) of c. 6118 t y−1 and 779 t y−1, respectively, from its influent rivers. In low summer flows the mean N and P fluxes decrease to c. 10% of the annual average. The sewage contribution to the inland-derived N load on an annual basis is c. 5% but, during the summer low flow conditions, the sewage component increases to c. 65% of the total river loading. The sewage contribution to the inland-derived P load on an annual basis is c. 11% but, during the dry season, it is 1.2 times larger than the river-derived flux. The construction of a regional sewer system linked to a submarine outfall, due for completion in 2005, is expected to lead to a reduction in nutrient fluxes from inland to the lagoon of c. 15% for N and c. 26% for P relative to the present values. While this system will reduce the nutrient loading in the upper reaches of the lagoon, an increase in nutrients derived from the ocean is anticipated, due to the proximity of the outfall to the inlet.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

High volume compost incorporation can reduce runoff from compacted soils but its use also associated with elevated N and P concentrations in runoff making it difficult to assess if this practice will reduce nutrient loading of surface waters. Additionally, little is known about how this practice will effect leguminous species establishment in lawns as means to reduce long term fertilizer use. When 5 cm of compost was incorporated into soil a reduction in runoff of 40 and 59% was needed for N and P losses from a tall fescue + microclover lawn to be equivalent to a non-compost amended soil supporting a well fertilized tall fescue lawn. Use of compost as a soil amendment resulted in quicker lawn establishment and darker color, when compared to non-amended soil receiving a mineral fertilizer. Biosolid composts containing high amounts ammonium severely reduce the establishment of clover in tall fescue + micrclover seed mixture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nutrient loading has been linked with severe water quality impairment, ranging from hypoxia to increased frequency of harmful algal blooms (HABs), loss of fisheries, and changes in biodiversity. Waters around the globe are experiencing deleterious effects of eutrophication; however, the relative amount of nitrogen (N) and phosphorus (P) reaching these waters is not changing proportionately, with high N loads increasingly enriched in chemically-reduced N forms. Research involving two urban freshwater and nutrient enriched systems, the Anacostia River, USA, a tributary of the Potomac River feeding into the Chesapeake Bay, and West Lake, Hangzhou, Zhejiang Province, China, was conducted to assess the response of phytoplankton communities to changing N-form and N/P-ratios. Field observations involving the characterization of ambient phytoplankton communities and N-forms, as well as experimental (nutrient enrichment) manipulations were used to understand shifts in phytoplankton community composition with increasing NH4+ loads. In both locations, a >2-fold increase in ambient NH4+:NO3- ratios was followed by a shift in the phytoplankton community, with diatoms giving way to chlorophytes and cyanobacteria. Enrichment experiments mirrored this, in that samples enriched with NH4+ lead to increased abundance of chlorophytes and cyanobacteria. This work shows that in both of these systems experiencing nutrient enrichment that NH4+ supports communities dominated by more chlorophytes and cyanobacteria than other phytoplankton groups.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

On November 19, 2012, Iowa Gov. Terry Branstad, Iowa Secretary of Agriculture Bill Northey, Director Chuck Gipp from the Iowa Department of Natural Resources and Dr. John Lawrence of Iowa State University announced the release of the Iowa Nutrient Reduction Strategy for public comment. A two-month public comment period and several informational meetings allowed the public to provide feedback on the draft strategy. Updates and improvements were made to the draft based on the public comments. The final version of the strategy was released May 29, 2013. The Iowa Nutrient Reduction Strategy is a science and technology-based approach to assess and reduce nutrients delivered to Iowa waterways and the Gulf of Mexico. The strategy outlines voluntary efforts to reduce nutrients in surface water from both point sources, such as wastewater treatment plants and industrial facilities, and nonpoint sources, including farm fields and urban areas, in a scientific, reasonable and cost effective manner. The development of the strategy reflects more than two years of work led by the Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources and Iowa State University. The scientific assessment to evaluate and model the effects of practices was developed through the efforts of 23 individuals representing five agencies or organizations, including scientists from ISU, IDALS, DNR, USDA Agricultural Research Service and USDA Natural Resources Conservation Service. The strategy was developed in response to the 2008 Gulf Hypoxia Action Plan that calls for the 12 states along the Mississippi River to develop strategies to reduce nutrient loading to the Gulf of Mexico. The Iowa strategy follows the recommended framework provided by EPA in 2011 and is only the second state to complete a statewide nutrient reduction strategy. This strategy is the beginning. Operational plans are being developed and work is underway. This is a dynamic document that will evolve over time, and is a key step towards improving Iowa’s water quality. The impetus for this report comes from the Water Resources Coordination Council (WRCC) which states in its 2014‐15 Annual Report “Efforts are underway to improve understanding of the multiple nutrient monitoring efforts that may be available and can be compared to the nutrient WQ monitoring framework to identify opportunities and potential data gaps to better coordinate and prioritize future nutrient monitoring efforts.” This report is the culmination of those efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

On November 19, 2012, Iowa Gov. Terry Branstad, Iowa Secretary of Agriculture Bill Northey, Director Chuck Gipp from the Iowa Department of Natural Resources and Dr. John Lawrence of Iowa State University announced the release of the Iowa Nutrient Reduction Strategy for public comment. A two-month public comment period and several informational meetings allowed the public to provide feedback on the draft strategy. Updates and improvements were made to the draft based on the public comments. The final version of the strategy was released May 29, 2013. The Iowa Nutrient Reduction Strategy is a science and technology-based approach to assess and reduce nutrients delivered to Iowa waterways and the Gulf of Mexico. The strategy outlines voluntary efforts to reduce nutrients in surface water from both point sources, such as wastewater treatment plants and industrial facilities, and nonpoint sources, including farm fields and urban areas, in a scientific, reasonable and cost effective manner. The development of the strategy reflects more than two years of work led by the Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources and Iowa State University. The scientific assessment to evaluate and model the effects of practices was developed through the efforts of 23 individuals representing five agencies or organizations, including scientists from ISU, IDALS, DNR, USDA Agricultural Research Service and USDA Natural Resources Conservation Service. The strategy was developed in response to the 2008 Gulf Hypoxia Action Plan that calls for the 12 states along the Mississippi River to develop strategies to reduce nutrient loading to the Gulf of Mexico. The Iowa strategy follows the recommended framework provided by EPA in 2011 and is only the second state to complete a statewide nutrient reduction strategy. This strategy is the beginning. Operational plans are being developed and work is underway. This is a dynamic document that will evolve over time, and is a key step towards improving Iowa’s water quality. The impetus for this report comes from the Water Resources Coordination Council (WRCC) which states in its 2014‐15 Annual Report “Efforts are underway to improve understanding of the multiple nutrient monitoring efforts that may be available and can be compared to the nutrient WQ monitoring framework to identify opportunities and potential data gaps to better coordinate and prioritize future nutrient monitoring efforts.” This report is the culmination of those efforts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

On November 19, 2012, Iowa Gov. Terry Branstad, Iowa Secretary of Agriculture Bill Northey, Director Chuck Gipp from the Iowa Department of Natural Resources and Dr. John Lawrence of Iowa State University announced the release of the Iowa Nutrient Reduction Strategy for public comment. A two-month public comment period and several informational meetings allowed the public to provide feedback on the draft strategy. Updates and improvements were made to the draft based on the public comments. The final version of the strategy was released May 29, 2013. The Iowa Nutrient Reduction Strategy is a science and technology-based approach to assess and reduce nutrients delivered to Iowa waterways and the Gulf of Mexico. The strategy outlines voluntary efforts to reduce nutrients in surface water from both point sources, such as wastewater treatment plants and industrial facilities, and nonpoint sources, including farm fields and urban areas, in a scientific, reasonable and cost effective manner. The development of the strategy reflects more than two years of work led by the Iowa Department of Agriculture and Land Stewardship, Iowa Department of Natural Resources and Iowa State University. The scientific assessment to evaluate and model the effects of practices was developed through the efforts of 23 individuals representing five agencies or organizations, including scientists from ISU, IDALS, DNR, USDA Agricultural Research Service and USDA Natural Resources Conservation Service. The strategy was developed in response to the 2008 Gulf Hypoxia Action Plan that calls for the 12 states along the Mississippi River to develop strategies to reduce nutrient loading to the Gulf of Mexico. The Iowa strategy follows the recommended framework provided by EPA in 2011 and is only the second state to complete a statewide nutrient reduction strategy. This strategy is the beginning. Operational plans are being developed and work is underway. This is a dynamic document that will evolve over time, and is a key step towards improving Iowa’s water quality. The impetus for this report comes from the Water Resources Coordination Council (WRCC) which states in its 2014‐15 Annual Report “Efforts are underway to improve understanding of the multiple nutrient monitoring efforts that may be available and can be compared to the nutrient WQ monitoring framework to identify opportunities and potential data gaps to better coordinate and prioritize future nutrient monitoring efforts.” This report is the culmination of those efforts.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The movement of chemicals through the soil to the groundwater or discharged to surface waters represents a degradation of these resources. In many cases, serious human and stock health implications are associated with this form of pollution. The chemicals of interest include nutrients, pesticides, salts, and industrial wastes. Recent studies have shown that current models and methods do not adequately describe the leaching of nutrients through soil, often underestimating the risk of groundwater contamination by surface-applied chemicals, and overestimating the concentration of resident solutes. This inaccuracy results primarily from ignoring soil structure and nonequilibrium between soil constituents, water, and solutes. A multiple sample percolation system (MSPS), consisting of 25 individual collection wells, was constructed to study the effects of localized soil heterogeneities on the transport of nutrients (NO3-, Cl-, PO43-) in the vadose zone of an agricultural soil predominantly dominated by clay. Very significant variations in drainage patterns across a small spatial scale were observed tone-way ANOVA, p < 0.001) indicating considerable heterogeneity in water flow patterns and nutrient leaching. Using data collected from the multiple sample percolation experiments, this paper compares the performance of two mathematical models for predicting solute transport, the advective-dispersion model with a reaction term (ADR), and a two-region preferential flow model (TRM) suitable for modelling nonequilibrium transport. These results have implications for modelling solute transport and predicting nutrient loading on a larger scale. (C) 2001 Elsevier Science Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Little Clear Lake is a 162 acre natural lake located in the western part of Pocahontas County. The lake has a 375 acre watershed that is gently rolling with nearly 84% of the watershed in row crop production. The lake is listed on the Iowa DNR’s impaired waters list due to nutrients, siltation and exotic species (purple loosestrife). These impairments have been verified with in-lake monitoring and landowner conversations as well as watershed modeling. The watershed models estimates that the average sheet and rill erosion is 1.74 tons/acre/year and sediment delivery is .12 tons/acre/year with a total of 44 tons/year being delivered to Little Clear Lake. The goal of the Little Clear Lake Watershed Protection Plan is to (1) reduce sediment delivery to Little Clear Lake by 60%, or 26.5 tons annually, by installing best management practices within the watershed. Doing this will control nearly 100% of the of the lake’s drainage area; and (2) initiate an information and education campaign for residents within the Little Clear Lake watershed which will ultimately prepare the residents and landowners for future project implementation. In an effort to control sediment and nutrient loading the Little Clear Lake Watershed Protection Plan has included 3 sediment catch basin sites and 5 grade stabilization structures, which function to stabilize concentrated flow areas.