895 resultados para Numerical formulation


Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we present a finite difference MAC-type approach for solving three-dimensional viscoelastic incompressible free surface flows governed by the eXtended Pom-Pom (XPP) model, considering a wide range of parameters. The numerical formulation presented in this work is an extension to three-dimensions of our implicit technique [Journal of Non-Newtonian Fluid Mechanics 166 (2011) 165-179] for solving two-dimensional viscoelastic free surface flows. To enhance the stability of the numerical method, we employ a combination of the projection method with an implicit technique for treating the pressure on the free surfaces. The differential constitutive equation of the fluid is solved using a second-order Runge-Kutta scheme. The numerical technique is validated by performing a mesh refinement study on a pipe flow, and the numerical results presented include the simulation of two complex viscoelastic free surface flows: extrudate-swell problem and jet buckling phenomenon. © 2013 Elsevier B.V.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The reduction of friction and wear in systems presenting metal-to-metal contacts, as in several mechanical components, represents a traditional challenge in tribology. In this context, this work presents a computational study based on the linear Archard's wear law and finite element modeling (FEM), in order to analyze unlubricated sliding wear observed in typical pin on disc tests. Such modeling was developed using finite element software Abaqus® with 3-D deformable geometries and elastic–plastic material behavior for the contact surfaces. Archard's wear model was implemented into a FORTRAN user subroutine (UMESHMOTION) in order to describe sliding wear. Modeling of debris and oxide formation mechanisms was taken into account by the use of a global wear coefficient obtained from experimental measurements. Such implementation considers an incremental computation for surface wear based on the nodal displacements by means of adaptive mesh tools that rearrange local nodal positions. In this way, the worn track was obtained and new surface profile is integrated for mass loss assessments. This work also presents experimental pin on disc tests with AISI 4140 pins on rotating AISI H13 discs with normal loads of 10, 35, 70 and 140 N, which represent, respectively, mild, transition and severe wear regimes, at sliding speed of 0.1 m/s. Numerical and experimental results were compared in terms of wear rate and friction coefficient. Furthermore, in the numerical simulation the stress field distribution and changes in the surface profile across the worn track of the disc were analyzed. The applied numerical formulation has shown to be more appropriate to predict mild wear regime than severe regime, especially due to the shorter running-in period observed in lower loads that characterizes this kind of regime.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Modelos de escoamento multifásico são amplamente usados em diversas áreas de pesquisa ambiental, como leitos fluidizados, dispersão de gás em líquidos e vários outros processos que englobam mais de uma propriedade físico-química do meio. Dessa forma, um modelo multifásico foi desenvolvido e adaptado para o estudo do transporte de sedimentos de fundo devido à ação de ondas de gravidade. Neste trabalho, foi elaborado o acoplamento multifásico de um modelo euleriano não-linear de ondas do tipo Boussinesq, baseado na formulação numérica encontrada em Wei et al. (1995), com um modelo lagrangiano de partículas, fundamentado pelo princípio Newtoniano do movimento com o esquema de colisões do tipo esferas rígidas. O modelo de ondas foi testado quanto à sua fonte geradora, representada por uma função gaussiana, pá-pistão e pá-batedor, e quanto à sua interação com a profundidade, através da não-linearidade e de propriedades dispersivas. Nos testes realizados da fonte geradora, foi observado que a fonte gaussiana, conforme Wei et al. (1999), apresentou melhor consistência e estabilidade na geração das ondas, quando comparada à teoria linear para um kh   . A não-linearidade do modelo de ondas de 2ª ordem para a dispersão apresentou resultados satisfatórios quando confrontados com o experimento de ondas sobre um obstáculo trapezoidal, onde a deformação da onda sobre a estrutura submersa está em concordância com os dados experimentais encontrados na literatura. A partir daí, o modelo granular também foi testado em dois experimentos. O primeiro simula uma quebra de barragem em um tanque contendo água e o segundo, a quebra de barragem é simulada com um obstáculo rígido adicionado ao centro do tanque. Nesses experimentos, o algoritmo de colisão foi eficaz no tratamento da interação entre partícula-partícula e partícula-parede, permitindo a evidência de processos físicos que são complicados de serem simulados por modelos de malhas regulares. Para o acoplamento do modelo de ondas e de sedimentos, o algoritmo foi testado com base de dados da literatura quanto à morfologia do leito. Os resultados foram confrontados com dados analíticos e de modelos numéricos, e se mostraram satisfatórios com relação aos pontos de erosão, de sedimentação e na alteração da forma da barra arenosa

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The problem of water wave scattering by a circular ice floe, floating in fluid of finite depth, is formulated and solved numerically. Unlike previous investigations of such situations, here we allow the thickness of the floe (and the fluid depth) to vary axisymmetrically and also incorporate a realistic non-zero draught. A numerical approximation to the solution of this problem is obtained to an arbitrary degree of accuracy by combining a Rayleigh–Ritz approximation of the vertical motion with an appropriate variational principle. This numerical solution procedure builds upon the work of Bennets et al. (2007, J. Fluid Mech., 579, 413–443). As part of the numerical formulation, we utilize a Fourier cosine expansion of the azimuthal motion, resulting in a system of ordinary differential equations to solve in the radial coordinate for each azimuthal mode. The displayed results concentrate on the response of the floe rather than the scattered wave field and show that the effects of introducing the new features of varying floe thickness and a realistic draught are significant.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose - The purpose of this paper is to develop an efficient numerical algorithm for the self-consistent solution of Schrodinger and Poisson equations in one-dimensional systems. The goal is to compute the charge-control and capacitance-voltage characteristics of quantum wire transistors. Design/methodology/approach - The paper presents a numerical formulation employing a non-uniform finite difference discretization scheme, in which the wavefunctions and electronic energy levels are obtained by solving the Schrodinger equation through the split-operator method while a relaxation method in the FTCS scheme ("Forward Time Centered Space") is used to solve the two-dimensional Poisson equation. Findings - The numerical model is validated by taking previously published results as a benchmark and then applying them to yield the charge-control characteristics and the capacitance-voltage relationship for a split-gate quantum wire device. Originality/value - The paper helps to fulfill the need for C-V models of quantum wire device. To do so, the authors implemented a straightforward calculation method for the two-dimensional electronic carrier density n(x,y). The formulation reduces the computational procedure to a much simpler problem, similar to the one-dimensional quantization case, significantly diminishing running time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present an analysis of the free vibration of plates with internal discontinuities due to central cut-outs. A numerical formulation for a basic L-shaped element which is divided into appropriate sub-domains that are dependent upon the location of the cut-out is used as the basic building element. Trial functions formed to satisfy certain boundary conditions are employed to define the transverse deflection of each sub-domain. Mathematical treatments in terms of the continuities in displacement, slope, moment, and higher derivatives between the adjacent sub-domains are enforced at the interconnecting edges. The energy functional results, from the proper assembly of the coupled strain and kinetic energy contributions of each sub-domain, are minimized via the Ritz procedure to extract the vibration frequencies and. mode shapes of the plates. The procedures are demonstrated by considering plates with central cut-outs that are subjected to two types of boundary conditions. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Numerical solutions of the sediment conservation law are reviewed in terms of their application to bed update schemes in coastal morphological models. It is demonstrated that inadequately formulated numerical techniques lead to the introduction of diffusion, dispersion and the bed elevation oscillations previously reported in the literature. Four different bed update schemes are then reviewed and tested against benchmark analytical solutions. These include a first order upwind scheme, two Lax-Wendroff schemes and a non-oscillating centred scheme (NOCS) recently applied to morphological modelling by Saint-Cast [Saint-Cast, F., 2002. Modelisation de la morphodynamique des corps sableux en milieu littoral (Modelling of coastal sand banks morphodynamics), University Bordeaux 1, Bordeaux, 245 pp.]. It is shown that NOCS limits and controls numerical errors while including all the sediment flux gradients that control morphological change. Further, no post solution filtering is required, which avoids difficulties with selecting filter strength. Finally, NOCS is compared to a recent Lax-Wendroff scheme with post-solution filtering for a longer term simulation of the morphological evolution around a trained river entrance. (C) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a fully non-linear finite element formulation for shell analysis comprising linear strain variation along the thickness of the shell and geometrically exact description for curved triangular elements. The developed formulation assumes positions and generalized unconstrained vectors as the variables of the problem, not displacements and finite rotations. The full 3D Saint-Venant-Kirchhoff constitutive relation is adopted and, to avoid locking, the rate of thickness variation enhancement is introduced. As a consequence, the second Piola-Kirchhoff stress tensor and the Green strain measure are employed to derive the specific strain energy potential. Curved triangular elements with cubic approximation are adopted using simple notation. Selected numerical simulations illustrate and confirm the objectivity, accuracy, path independence and applicability of the proposed technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work presents a non-linear boundary element formulation applied to analysis of contact problems. The boundary element method (BEM) is known as a robust and accurate numerical technique to handle this type of problem, because the contact among the solids occurs along their boundaries. The proposed non-linear formulation is based on the use of singular or hyper-singular integral equations by BEM, for multi-region contact. When the contact occurs between crack surfaces, the formulation adopted is the dual version of BEM, in which singular and hyper-singular integral equations are defined along the opposite sides of the contact boundaries. The structural non-linear behaviour on the contact is considered using Coulomb`s friction law. The non-linear formulation is based on the tangent operator in which one uses the derivate of the set of algebraic equations to construct the corrections for the non-linear process. This implicit formulation has shown accurate as the classical approach, however, it is faster to compute the solution. Examples of simple and multi-region contact problems are shown to illustrate the applicability of the proposed scheme. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper deals with analysis of multiple random crack propagation in two-dimensional domains using the boundary element method (BEM). BEM is known to be a robust and accurate numerical technique for analysing this type of problem. The formulation adopted in this work is based on the dual BEM, for which singular and hyper-singular integral equations are used. We propose an iterative scheme to predict the crack growth path and the crack length increment at each time step. The proposed scheme able us to simulate localisation and coalescence phenomena, which is the main contribution of this paper. Considering the fracture mechanics analysis, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of simple and multi-fractured domains, loaded up to the rupture, are considered to illustrate the applicability of the proposed scheme. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new two-dimensionally mapped infinite boundary element (IBE) is presented. The formulation is based on a triangular boundary element (BE) with linear shape functions instead of the quadrilateral IBEs usually found in the literature. The infinite solids analyzed are assumed to be three-dimensional, linear-elastic and isotropic, and Kelvin fundamental solutions are employed. One advantage of the proposed formulation over quadratic or higher order elements is that no additional degrees of freedom are added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced without compromising the accuracy of the result. Two examples are presented, in which the numerical results show good agreement with authors using quadrilateral IBEs and analytical solutions. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new boundary element method formulation for elastoplastic analysis of plates with geometrical nonlinearities is presented. The von Mises criterion with linear isotropic hardening is considered to evaluate the plastic zone. Large deflections are assumed but within the context of small strain. To derive the boundary integral equations the von Karman`s hypothesis is taken into account. An initial stress field is applied to correct the true stresses according to the adopted criterion. Isoparametric linear elements are used to approximate the boundary unknown values while triangular internal cells with linear shape function are adopted to evaluate the domain value influences. The nonlinear system of equations is solved by using an implicit scheme together with the consistent tangent operator derived along the paper. Numerical examples are presented to demonstrate the accuracy and the validity of the proposed formulation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is related to the so-called non-conventional finite element formulations. Essentially, a methodology for the enrichment of the initial approximation which is typical of the meshless methods and based on the clouds concept is introduced in the hybrid-Trefftz formulation for plane elasticity. The formulation presented allows for the approximation and direct enrichment of two independent fields: stresses in the domains and displacements on the boundaries of the elements. Defined by a set of elements and interior boundaries sharing a common node, the cloud notion is employed to select the enrichment support for the approximation fields. The numerical analysis performed reveals an excellent performance of the resulting formulation, characterized by the good approximation ability and a reduced computational effort. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider a class of two-dimensional problems in classical linear elasticity for which material overlapping occurs in the absence of singularities. Of course, material overlapping is not physically realistic, and one possible way to prevent it uses a constrained minimization theory. In this theory, a minimization problem consists of minimizing the total potential energy of a linear elastic body subject to the constraint that the deformation field must be locally invertible. Here, we use an interior and an exterior penalty formulation of the minimization problem together with both a standard finite element method and classical nonlinear programming techniques to compute the minimizers. We compare both formulations by solving a plane problem numerically in the context of the constrained minimization theory. The problem has a closed-form solution, which is used to validate the numerical results. This solution is regular everywhere, including the boundary. In particular, we show numerical results which indicate that, for a fixed finite element mesh, the sequences of numerical solutions obtained with both the interior and the exterior penalty formulations converge to the same limit function as the penalization is enforced. This limit function yields an approximate deformation field to the plane problem that is locally invertible at all points in the domain. As the mesh is refined, this field converges to the exact solution of the plane problem.