940 resultados para Numerical methods


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider a variable-order fractional advection-diffusion equation with a nonlinear source term on a finite domain. Explicit and implicit Euler approximations for the equation are proposed. Stability and convergence of the methods are discussed. Moreover, we also present a fractional method of lines, a matrix transfer technique, and an extrapolation method for the equation. Some numerical examples are given, and the results demonstrate the effectiveness of theoretical analysis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we consider the numerical solution of a fractional partial differential equation with Riesz space fractional derivatives (FPDE-RSFD) on a finite domain. Two types of FPDE-RSFD are considered: the Riesz fractional diffusion equation (RFDE) and the Riesz fractional advectiondispersion equation (RFADE). The RFDE is obtained from the standard diffusion equation by replacing the second-order space derivative with the Riesz fractional derivative of order set membership, variant(1,2]. The RFADE is obtained from the standard advectiondispersion equation by replacing the first-order and second-order space derivatives with the Riesz fractional derivatives of order set membership, variant(0,1) and of order set membership, variant(1,2], respectively. Firstly, analytic solutions of both the RFDE and RFADE are derived. Secondly, three numerical methods are provided to deal with the Riesz space fractional derivatives, namely, the L1/L2-approximation method, the standard/shifted Grnwald method, and the matrix transform method (MTM). Thirdly, the RFDE and RFADE are transformed into a system of ordinary differential equations, which is then solved by the method of lines. Finally, numerical results are given, which demonstrate the effectiveness and convergence of the three numerical methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As part of an ongoing research on the development of a longer life insulated rail joint (IRJ), this paper reports a field experiment and a simplified 2D numerical modelling for the purpose of investigating the behaviour of rail web in the vicinity of endpost in an insulated rail joint (IRJ) due to wheel passages. A simplified 2D plane stress finite element model is used to simulate the wheel-rail rolling contact impact at IRJ. This model is validated using data from a strain gauged IRJ that was installed in a heavy haul network; data in terms of the vertical and shear strains at specific positions of the IRJ during train passing were captured and compared with the results of the FE model. The comparison indicates a satisfactory agreement between the FE model and the field testing. Furthermore, it demonstrates that the experimental and numerical analyses reported in this paper provide a valuable datum for developing further insight into the behaviour of IRJ under wheel impacts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the past three decades, the subject of fractional calculus (that is, calculus of integrals and derivatives of arbitrary order) has gained considerable popularity and importance, mainly due to its demonstrated applications in numerous diverse and widespread fields in science and engineering. For example, fractional calculus has been successfully applied to problems in system biology, physics, chemistry and biochemistry, hydrology, medicine, and finance. In many cases these new fractional-order models are more adequate than the previously used integer-order models, because fractional derivatives and integrals enable the description of the memory and hereditary properties inherent in various materials and processes that are governed by anomalous diffusion. Hence, there is a growing need to find the solution behaviour of these fractional differential equations. However, the analytic solutions of most fractional differential equations generally cannot be obtained. As a consequence, approximate and numerical techniques are playing an important role in identifying the solution behaviour of such fractional equations and exploring their applications. The main objective of this thesis is to develop new effective numerical methods and supporting analysis, based on the finite difference and finite element methods, for solving time, space and time-space fractional dynamical systems involving fractional derivatives in one and two spatial dimensions. A series of five published papers and one manuscript in preparation will be presented on the solution of the space fractional diffusion equation, space fractional advectiondispersion equation, time and space fractional diffusion equation, time and space fractional Fokker-Planck equation with a linear or non-linear source term, and fractional cable equation involving two time fractional derivatives, respectively. One important contribution of this thesis is the demonstration of how to choose different approximation techniques for different fractional derivatives. Special attention has been paid to the Riesz space fractional derivative, due to its important application in the field of groundwater flow, system biology and finance. We present three numerical methods to approximate the Riesz space fractional derivative, namely the L1/ L2-approximation method, the standard/shifted Grunwald method, and the matrix transform method (MTM). The first two methods are based on the finite difference method, while the MTM allows discretisation in space using either the finite difference or finite element methods. Furthermore, we prove the equivalence of the Riesz fractional derivative and the fractional Laplacian operator under homogeneous Dirichlet boundary conditions a result that had not previously been established. This result justifies the aforementioned use of the MTM to approximate the Riesz fractional derivative. After spatial discretisation, the time-space fractional partial differential equation is transformed into a system of fractional-in-time differential equations. We then investigate numerical methods to handle time fractional derivatives, be they Caputo type or Riemann-Liouville type. This leads to new methods utilising either finite difference strategies or the Laplace transform method for advancing the solution in time. The stability and convergence of our proposed numerical methods are also investigated. Numerical experiments are carried out in support of our theoretical analysis. We also emphasise that the numerical methods we develop are applicable for many other types of fractional partial differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fractional FokkerPlanck equations have been used to model several physical situations that present anomalous diffusion. In this paper, a class of time- and space-fractional FokkerPlanck equations (TSFFPE), which involve the RiemannLiouville time-fractional derivative of order 1- ((0, 1)) and the Riesz space-fractional derivative (RSFD) of order (1, 2), are considered. The solution of TSFFPE is important for describing the competition between subdiffusion and Lvy flights. However, effective numerical methods for solving TSFFPE are still in their infancy. We present three computationally efficient numerical methods to deal with the RSFD, and approximate the RiemannLiouville time-fractional derivative using the Grnwald method. The TSFFPE is then transformed into a system of ordinary differential equations (ODE), which is solved by the fractional implicit trapezoidal method (FITM). Finally, numerical results are given to demonstrate the effectiveness of these methods. These techniques can also be applied to solve other types of fractional partial differential equations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We seek numerical methods for secondorder stochastic differential equations that reproduce the stationary density accurately for all values of damping. A complete analysis is possible for scalar linear secondorder equations (damped harmonic oscillators with additive noise), where the statistics are Gaussian and can be calculated exactly in the continuoustime and discretetime cases. A matrix equation is given for the stationary variances and correlation for methods using one Gaussian random variable per timestep. The only RungeKutta method with a nonsingular tableau matrix that gives the exact steady state density for all values of damping is the implicit midpoint rule. Numerical experiments, comparing the implicit midpoint rule with Heun and leapfrog methods on nonlinear equations with additive or multiplicative noise, produce behavior similar to the linear case.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider time-space fractional reaction diffusion equations in two dimensions. This equation is obtained from the standard reaction diffusion equation by replacing the first order time derivative with the Caputo fractional derivative, and the second order space derivatives with the fractional Laplacian. Using the matrix transfer technique proposed by Ilic, Liu, Turner and Anh [Fract. Calc. Appl. Anal., 9:333--349, 2006] and the numerical solution strategy used by Yang, Turner, Liu, and Ilic [SIAM J. Scientific Computing, 33:1159--1180, 2011], the solution of the time-space fractional reaction diffusion equations in two dimensions can be written in terms of a matrix function vector product $f(A)b$ at each time step, where $A$ is an approximate matrix representation of the standard Laplacian. We use the finite volume method over unstructured triangular meshes to generate the matrix $A$, which is therefore non-symmetric. However, the standard Lanczos method for approximating $f(A)b$ requires that $A$ is symmetric. We propose a simple and novel transformation in which the standard Lanczos method is still applicable to find $f(A)b$, despite the loss of symmetry. Numerical results are presented to verify the accuracy and efficiency of our newly proposed numerical solution strategy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the multi-term time-fractional wave diffusion equations are considered. The multiterm time fractional derivatives are defined in the Caputo sense, whose orders belong to the intervals [0,1], [1,2), [0,2), [0,3), [2,3) and [2,4), respectively. Some computationally effective numerical methods are proposed for simulating the multi-term time-fractional wave-diffusion equations. The numerical results demonstrate the effectiveness of theoretical analysis. These methods and techniques can also be extended to other kinds of the multi-term fractional time-space models with fractional Laplacian.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anomalous subdiffusion equations have in recent years received much attention. In this paper, we consider a two-dimensional variable-order anomalous subdiffusion equation. Two numerical methods (the implicit and explicit methods) are developed to solve the equation. Their stability, convergence and solvability are investigated by the Fourier method. Moreover, the effectiveness of our theoretical analysis is demonstrated by some numerical examples. 2011 American Mathematical Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, a class of fractional advectiondispersion models (FADMs) is considered. These models include five fractional advectiondispersion models, i.e., the time FADM, the mobile/immobile time FADM with a time Caputo fractional derivative 0 < < 1, the space FADM with two sides RiemannLiouville derivatives, the timespace FADM and the time fractional advectiondiffusion-wave model with damping with index 1 < < 2. These equations can be used to simulate the regional-scale anomalous dispersion with heavy tails. We propose computationally effective implicit numerical methods for these FADMs. The stability and convergence of the implicit numerical methods are analysed and compared systematically. Finally, some results are given to demonstrate the effectiveness of theoretical analysis.