934 resultados para Number of Chlorine
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: (1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (E LUMO) via QSAR modelling and analysis; (2) to validate the models by using internal and external cross-validation techniques; (3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl ) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: (1) Linear or Multi-linear Regression (MLR); (2) Partial Least Squares (PLS); and (3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: (1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; (2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; (3) E LUMO are shown to correlate highly with the NCl for several classes of DBPs; and (4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
Quantitative Structure-Activity Relationship (QSAR) has been applied extensively in predicting toxicity of Disinfection By-Products (DBPs) in drinking water. Among many toxicological properties, acute and chronic toxicities of DBPs have been widely used in health risk assessment of DBPs. These toxicities are correlated with molecular properties, which are usually correlated with molecular descriptors. The primary goals of this thesis are: 1) to investigate the effects of molecular descriptors (e.g., chlorine number) on molecular properties such as energy of the lowest unoccupied molecular orbital (ELUMO) via QSAR modelling and analysis; 2) to validate the models by using internal and external cross-validation techniques; 3) to quantify the model uncertainties through Taylor and Monte Carlo Simulation. One of the very important ways to predict molecular properties such as ELUMO is using QSAR analysis. In this study, number of chlorine (NCl) and number of carbon (NC) as well as energy of the highest occupied molecular orbital (EHOMO) are used as molecular descriptors. There are typically three approaches used in QSAR model development: 1) Linear or Multi-linear Regression (MLR); 2) Partial Least Squares (PLS); and 3) Principle Component Regression (PCR). In QSAR analysis, a very critical step is model validation after QSAR models are established and before applying them to toxicity prediction. The DBPs to be studied include five chemical classes: chlorinated alkanes, alkenes, and aromatics. In addition, validated QSARs are developed to describe the toxicity of selected groups (i.e., chloro-alkane and aromatic compounds with a nitro- or cyano group) of DBP chemicals to three types of organisms (e.g., Fish, T. pyriformis, and P.pyosphoreum) based on experimental toxicity data from the literature. The results show that: 1) QSAR models to predict molecular property built by MLR, PLS or PCR can be used either to select valid data points or to eliminate outliers; 2) The Leave-One-Out Cross-Validation procedure by itself is not enough to give a reliable representation of the predictive ability of the QSAR models, however, Leave-Many-Out/K-fold cross-validation and external validation can be applied together to achieve more reliable results; 3) ELUMO are shown to correlate highly with the NCl for several classes of DBPs; and 4) According to uncertainty analysis using Taylor method, the uncertainty of QSAR models is contributed mostly from NCl for all DBP classes.
Resumo:
A new method for estimating the time to colonization of Methicillin-resistant Staphylococcus Aureus (MRSA) patients is developed in this paper. The time to colonization of MRSA is modelled using a Bayesian smoothing approach for the hazard function. There are two prior models discussed in this paper: the first difference prior and the second difference prior. The second difference prior model gives smoother estimates of the hazard functions and, when applied to data from an intensive care unit (ICU), clearly shows increasing hazard up to day 13, then a decreasing hazard. The results clearly demonstrate that the hazard is not constant and provide a useful quantification of the effect of length of stay on the risk of MRSA colonization which provides useful insight.
Resumo:
Both clinical practice and clinical research settings can require successive administrations of a memory test, particularly when following the trajectory of suspected memory decline in older adults. However, relatively few verbal episodic memory tests have alternative forms. We set out to create a broad based memory test to allow for the use of an essentially unlimited number of alternative forms. Four tasks for inclusion in such a test were developed. These tasks varied the requirement for recall as opposed to recognition, the need to form an association between unrelated words, and the need to discriminate the most recent list from earlier lists, all of which proved useful. A total of 115 participants completed the battery of tests and were used to show that the test could differentiate between older and younger adults; a sub-sample of 73 participants completed alternative forms of the tests to determine test-retest reliability and the amount of learning to learn.
Resumo:
An improved scaling analysis and direct numerical simulations are performed for the unsteady natural convection boundary layer adjacent to a downward facing inclined plate with uniform heat flux. The development of the thermal or viscous boundary layers may be classified into three distinct stages: a start-up stage, a transitional stage and a steady stage, which can be clearly identified in the analytical as well as the numerical results. Previous scaling shows that the existing scaling laws of the boundary layer thickness, velocity and steady state time scale for the natural convection flow on a heated plate of uniform heat flux provide a very poor prediction of the Prandtl number dependency of the flow. However, those scalings perform very well with Rayleigh number and aspect ratio dependency. In this study, a modified Prandtl number scaling is developed using a triple layer integral approach for Pr > 1. It is seen that in comparison to the direct numerical simulations, the modified scaling performs considerably better than the previous scaling.
Resumo:
The birth of a baby is a significant event for women and their families, with the event being influenced by the prevailing social and cultural context. Historically, women throughout the world have given birth at home assisted by other women who helped them cope with the stress of labour and birth. In the middle of the twentieth century, the togetherness, caring and support that were provided within the social and cultural context of childbirth began to change; women in most developed countries, and to some extent in developing countries, laboured and gave birth in institutions that isolated them from the support of family and friends. This practice is referred to as the medical model of childbirth and, over time, birthing within this model has come to be viewed by women as a dehumanising experience. In an attempt to secure a more supportive experience, women began to demand the presence of a supportive companion; namely their partner. This event became the catalyst for a number of studies focusing on different types of support providers and their contribution to the phenomenon of social support during labour. More recently, it has become a common practice for some women to be supported during labour by a number of people from their social network. However, research on the influence of such supportive people on women’s experience of labour and birth and on birth outcomes is scarce. The aim of this study is to examine the influence of various support arrangements from a woman’s family and social network on her experience of labour and birth and on birth outcomes. The mixed-method study was conducted to answer three research questions: 1. Do women with more than one support person present during labour and birth have similar perceptions and experiences of support compared to women with one support person? 2. Do women with more than one support person present during labour and birth have similar birth outcomes compared to women with one support person? 3. Do women with different types of support providers during labour and birth have similar birth outcomes? Methods Phase one of this study developed, pilot tested and administered a newly developed instrument designed to measure women’s perceptions of supportive behaviours provided during labour. Specific birth outcome data were extracted from the medical records. Phase two consisted of in-depth interviews with a sample of women who had completed the survey. Results: The results identified a statistically significant relationship between women’s perceptions of social support and the number of support providers: women supported by one person only rated the supportive behaviours of that person more highly compared to women who were supported by a number of people. The results also identified that women supported by one person used less analgesia. An additional qualitative finding was that some women sacrificed the support of female relatives at the request of their partners. Conclusion: By using a mixed-method approach, this study found that women were selective in their choice of support providers, as they chose individuals with whom they had an enduring affectionate attachment. Women place more emphasis on a support person’s ability to fulfil their attachment needs of close proximity and a sense of security and safety, rather than their ability to provide the expected functional supportive behaviours.
Resumo:
Most studies of in vitro fertilisation (IVF) outcomes use cycle-based data and fail to account for women who use repeated IVF cycles. The objective of this study was to examine the association between the number of eggs collected (EC) and the percentage fertilised normally, and women’s self-reported medical, personal and social histories. This study involved a crosssectional survey of infertile women (aged 27-46 years) recruited from four privately-owned fertility clinics located in major cities of Australia. Regression modeling was used to estimate the mean EC and mean percentage of eggs fertilised normally: adjusted for age at EC. Appropriate statistical methods were used to take account of repeated IVF cycles by the same women. Among 121 participants who returned the survey and completed 286 IVF cycles, the mean age at EC was 35.2 years (SD 4.5). Women’s age at EC was strongly associated with the number of EC: <30 years, 11.7 EC; 30.0-< 35 years, 10.6 EC; 35.0-<40.0 years, 7.3 EC; 40.0+ years, 8.1 EC; p<.0001. Prolonged use of oral contraceptives was associated with lower numbers of EC: never used, 14.6 EC; 0-2 years, 11.7 EC; 3-5 years, 8.5 EC; 6þ years, 8.2 EC; p=.04. Polycystic ovary syndrome (PCOS) was associated with more EC: have PCOS, 11.5 EC; no, 8.3 EC; p=.01. Occupational exposures may be detrimental to normal fertilisation: professional roles, 58.8%; trade and service roles, 51.8%; manual and other roles, 63.3%; p=.02. In conclusion, women’s age remains the most significant characteristic associated with EC but not the percentage of eggs fertilised normally.
Resumo:
Deciding the appropriate population size and number of is- lands for distributed island-model genetic algorithms is often critical to the algorithm’s success. This paper outlines a method that automatically searches for good combinations of island population sizes and the number of islands. The method is based on a race between competing parameter sets, and collaborative seeding of new parameter sets. This method is applicable to any problem, and makes distributed genetic algorithms easier to use by reducing the number of user-set parameters. The experimental results show that the proposed method robustly and reliably finds population and islands settings that are comparable to those found with traditional trial-and-error approaches.
Resumo:
The use of Bayesian methodologies for solving optimal experimental design problems has increased. Many of these methods have been found to be computationally intensive for design problems that require a large number of design points. A simulation-based approach that can be used to solve optimal design problems in which one is interested in finding a large number of (near) optimal design points for a small number of design variables is presented. The approach involves the use of lower dimensional parameterisations that consist of a few design variables, which generate multiple design points. Using this approach, one simply has to search over a few design variables, rather than searching over a large number of optimal design points, thus providing substantial computational savings. The methodologies are demonstrated on four applications, including the selection of sampling times for pharmacokinetic and heat transfer studies, and involve nonlinear models. Several Bayesian design criteria are also compared and contrasted, as well as several different lower dimensional parameterisation schemes for generating the many design points.
Resumo:
Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10−11, OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.
Resumo:
Individual variability in the acquisition, consolidation and extinction of conditioned fear potentially contributes to the development of fear pathology including posttraumatic stress disorder (PTSD). Pavlovian fear conditioning is a key tool for the study of fundamental aspects of fear learning. Here, we used a selected mouse line of High and Low Pavlovian conditioned fear created from an advanced intercrossed line (AIL) in order to begin to identify the cellular basis of phenotypic divergence in Pavlovian fear conditioning. We investigated whether phosphorylated MAPK (p44/42 ERK/MAPK), a protein kinase required in the amygdala for the acquisition and consolidation of Pavlovian fear memory, is differentially expressed following Pavlovian fear learning in the High and Low fear lines. We found that following Pavlovian auditory fear conditioning, High and Low line mice differ in the number of pMAPK-expressing neurons in the dorsal sub nucleus of the lateral amygdala (LAd). In contrast, this difference was not detected in the ventral medial (LAvm) or ventral lateral (LAvl) amygdala sub nuclei or in control animals. We propose that this apparent increase in plasticity at a known locus of fear memory acquisition and consolidation relates to intrinsic differences between the two fear phenotypes. These data provide important insights into the micronetwork mechanisms encoding phenotypic differences in fear. Understanding the circuit level cellular and molecular mechanisms that underlie individual variability in fear learning is critical for the development of effective treatment of fear-related illnesses such as PTSD.