991 resultados para Number line
Resumo:
Active head turns to the left and right have recently been shown to influence numerical cognition by shifting attention along the mental number line. In the present study, we found that passive whole-body motion influences numerical cognition. In a random-number generation task (Experiment 1), leftward and downward displacement of participants facilitated small number generation, whereas rightward and upward displacement facilitated the generation of large numbers. Influences of leftward and rightward motion were also found for the processing of auditorily presented numbers in a magnitude-judgment task (Experiment 2). Additionally, we investigated the reverse effect of the number-space association (Experiment 3). Participants were displaced leftward or rightward and asked to detect motion direction as fast as possible while small or large numbers were auditorily presented. When motion detection was difficult, leftward motion was detected faster when hearing small number and rightward motion when hearing large number. We provide new evidence that bottom-up vestibular activation is sufficient to interact with the higher-order spatial representation underlying numerical cognition. The results show that action planning or motor activity is not necessary to influence spatial attention. Moreover, our results suggest that self-motion perception and numerical cognition can mutually influence each other.
Resumo:
Recent evidence has highlighted the important role that number ordering skills play in arithmetic abilities (e.g., Lyons & Beilock, 2011). In fact, Lyons et al. (2014) demonstrated that although at the start of formal mathematics education number comparison skills are the best predictors of arithmetic performance, from around the age of 10, number ordering skills become the strongest numerical predictors of arithmetic abilities. In the current study we demonstrated that number comparison and ordering skills were both significantly related to arithmetic performance in adults, and the effect size was greater in the case of ordering skills. Additionally, we found that the effect of number comparison skills on arithmetic performance was partially mediated by number ordering skills. Moreover, performance on comparison and ordering tasks involving the months of the year was also strongly correlated with arithmetic skills, and participants displayed similar (canonical or reverse) distance effects on the comparison and ordering tasks involving months as when the tasks included numbers. This suggests that the processes responsible for the link between comparison and ordering skills and arithmetic performance are not specific to the domain of numbers. Finally, a factor analysis indicated that performance on comparison and ordering tasks loaded on a factor which included performance on a number line task and self-reported spatial thinking styles. These results substantially extend previous research on the role of order processing abilities in mental arithmetic.
Resumo:
Tese de Doutoramento em Psicologia - Especialidade em Psicologia Experimental e Ciências Cognitivas
Resumo:
The perspex machine arose from the unification of projective geometry with the Turing machine. It uses a total arithmetic, called transreal arithmetic, that contains real arithmetic and allows division by zero. Transreal arithmetic is redefined here. The new arithmetic has both a positive and a negative infinity which lie at the extremes of the number line, and a number nullity that lies off the number line. We prove that nullity, 0/0, is a number. Hence a number may have one of four signs: negative, zero, positive, or nullity. It is, therefore, impossible to encode the sign of a number in one bit, as floating-, point arithmetic attempts to do, resulting in the difficulty of having both positive and negative zeros and NaNs. Transrational arithmetic is consistent with Cantor arithmetic. In an extension to real arithmetic, the product of zero, an infinity, or nullity with its reciprocal is nullity, not unity. This avoids the usual contradictions that follow from allowing division by zero. Transreal arithmetic has a fixed algebraic structure and does not admit options as IEEE, floating-point arithmetic does. Most significantly, nullity has a simple semantics that is related to zero. Zero means "no value" and nullity means "no information." We argue that nullity is as useful to a manufactured computer as zero is to a human computer. The perspex machine is intended to offer one solution to the mind-body problem by showing how the computable aspects of mind and. perhaps, the whole of mind relates to the geometrical aspects of body and, perhaps, the whole of body. We review some of Turing's writings and show that he held the view that his machine has spatial properties. In particular, that it has the property of being a 7D lattice of compact spaces. Thus, we read Turing as believing that his machine relates computation to geometrical bodies. We simplify the perspex machine by substituting an augmented Euclidean geometry for projective geometry. This leads to a general-linear perspex-machine which is very much easier to pro-ram than the original perspex-machine. We then show how to map the whole of perspex space into a unit cube. This allows us to construct a fractal of perspex machines with the cardinality of a real-numbered line or space. This fractal is the universal perspex machine. It can solve, in unit time, the halting problem for itself and for all perspex machines instantiated in real-numbered space, including all Turing machines. We cite an experiment that has been proposed to test the physical reality of the perspex machine's model of time, but we make no claim that the physical universe works this way or that it has the cardinality of the perspex machine. We leave it that the perspex machine provides an upper bound on the computational properties of physical things, including manufactured computers and biological organisms, that have a cardinality no greater than the real-number line.
Resumo:
In Mathematics literature some records highlight the difficulties encountered in the teaching-learning process of integers. In the past, and for a long time, many mathematicians have experienced and overcome such difficulties, which become epistemological obstacles imposed on the students and teachers nowadays. The present work comprises the results of a research conducted in the city of Natal, Brazil, in the first half of 2010, at a state school and at a federal university. It involved a total of 45 students: 20 middle high, 9 high school and 16 university students. The central aim of this study was to identify, on the one hand, which approach used for the justification of the multiplication between integers is better understood by the students and, on the other hand, the elements present in the justifications which contribute to surmount the epistemological obstacles in the processes of teaching and learning of integers. To that end, we tried to detect to which extent the epistemological obstacles faced by the students in the learning of integers get closer to the difficulties experienced by mathematicians throughout human history. Given the nature of our object of study, we have based the theoretical foundation of our research on works related to the daily life of Mathematics teaching, as well as on theorists who analyze the process of knowledge building. We conceived two research tools with the purpose of apprehending the following information about our subjects: school life; the diagnosis on the knowledge of integers and their operations, particularly the multiplication of two negative integers; the understanding of four different justifications, as elaborated by mathematicians, for the rule of signs in multiplication. Regarding the types of approach used to explain the rule of signs arithmetic, geometric, algebraic and axiomatic , we have identified in the fieldwork that, when multiplying two negative numbers, the students could better understand the arithmetic approach. Our findings indicate that the approach of the rule of signs which is considered by the majority of students to be the easiest one can be used to help understand the notion of unification of the number line, an obstacle widely known nowadays in the process of teaching-learning
Resumo:
Pós-graduação em Educação Matemática - IGCE
Resumo:
The humans process the numbers in a similar way to animals. There are countless studies in which similar performance between animals and humans (adults and/or children) are reported. Three models have been developed to explain the cognitive mechanisms underlying the number processing. The triple-code model (Dehaene, 1992) posits an mental number line as preferred way to represent magnitude. The mental number line has three particular effects: the distance, the magnitude and the SNARC effects. The SNARC effect shows a spatial association between number and space representations. In other words, the small numbers are related to left space while large numbers are related to right space. Recently a vertical SNARC effect has been found (Ito & Hatta, 2004; Schwarz & Keus, 2004), reflecting a space-related bottom-to-up representation of numbers. The magnitude representations horizontally and vertically could influence the subject performance in explicit and implicit digit tasks. The goal of this research project aimed to investigate the spatial components of number representation using different experimental designs and tasks. The experiment 1 focused on horizontal and vertical number representations in a within- and between-subjects designs in a parity and magnitude comparative tasks, presenting positive or negative Arabic digits (1-9 without 5). The experiment 1A replied the SNARC and distance effects in both spatial arrangements. The experiment 1B showed an horizontal reversed SNARC effect in both tasks while a vertical reversed SNARC effect was found only in comparative task. In the experiment 1C two groups of subjects performed both tasks in two different instruction-responding hand assignments with positive numbers. The results did not show any significant differences between two assignments, even if the vertical number line seemed to be more flexible respect to horizontal one. On the whole the experiment 1 seemed to demonstrate a contextual (i.e. task set) influences of the nature of the SNARC effect. The experiment 2 focused on the effect of horizontal and vertical number representations on spatial biases in a paper-and-pencil bisecting tasks. In the experiment 2A the participants were requested to bisect physical and number (2 or 9) lines horizontally and vertically. The findings demonstrated that digit 9 strings tended to generate a more rightward bias comparing with digit 2 strings horizontally. However in vertical condition the digit 2 strings generated a more upperward bias respect to digit 9 strings, suggesting a top-to-bottom number line. In the experiment 2B the participants were asked to bisect lines flanked by numbers (i.e. 1 or 7) in four spatial arrangements: horizontal, vertical, right-diagonal and left-diagonal lines. Four number conditions were created according to congruent or incongruent number line representation: 1-1, 1-7, 7-1 and 7-7. The main results showed a more reliable rightward bias in horizontal congruent condition (1-7) respect to incongruent condition (7-1). Vertically the incongruent condition (1-7) determined a significant bias towards bottom side of line respect to congruent condition (7-1). The experiment 2 suggested a more rigid horizontal number line while in vertical condition the number representation could be more flexible. In the experiment 3 we adopted the materials of experiment 2B in order to find a number line effect on temporal (motor) performance. The participants were presented horizontal, vertical, rightdiagonal and left-diagonal lines flanked by the same digits (i.e. 1-1 or 7-7) or by different digits (i.e. 1-7 or 7-1). The digits were spatially congruent or incongruent with their respective hypothesized mental representations. Participants were instructed to touch the lines either close to the large digit, or close to the small digit, or to bisected the lines. Number processing influenced movement execution more than movement planning. Number congruency influenced spatial biases mostly along the horizontal but also along the vertical dimension. These results support a two-dimensional magnitude representation. Finally, the experiment 4 addressed the visuo-spatial manipulation of number representations for accessing and retrieval arithmetic facts. The participants were requested to perform a number-matching and an addition verification tasks. The findings showed an interference effect between sum-nodes and neutral-nodes only with an horizontal presentation of digit-cues, in number-matching tasks. In the addition verification task, the performance was similar for horizontal and vertical presentations of arithmetic problems. In conclusion the data seemed to show an automatic activation of horizontal number line also used to retrieval arithmetic facts. The horizontal number line seemed to be more rigid and the preferred way to order number from left-to-right. A possible explanation could be the left-to-right direction for reading and writing. The vertical number line seemed to be more flexible and more dependent from the tasks, reflecting perhaps several example in the environment representing numbers either from bottom-to-top or from top-to-bottom. However the bottom-to-top number line seemed to be activated by explicit task demands.
Resumo:
While the influence of spatial-numerical associations in number categorization tasks has been well established, their role in mental arithmetic is less clear. It has been hypothesized that mental addition leads to rightward and upward shifts of spatial attention (along the “mental number line”), whereas subtraction leads to leftward and downward shifts. We addressed this hypothesis by analyzing spontaneous eye movements during mental arithmetic. Participants solved verbally presented arithmetic problems (e.g., 2 + 7, 8–3) aloud while looking at a blank screen. We found that eye movements reflected spatial biases in the ongoing mental operation: Gaze position shifted more upward when participants solved addition compared to subtraction problems, and the horizontal gaze position was partly determined by the magnitude of the operands. Interestingly, the difference between addition and subtraction trials was driven by the operator (plus vs. minus) but was not influenced by the computational process. Thus, our results do not support the idea of a mental movement toward the solution during arithmetic but indicate a semantic association between operation and space.
Resumo:
Freely available software has popularized “mousetracking” to study cognitive processing; this involves the on-line recording of cursor positions while participants move a computer mouse to indicate their choice. Movement trajectories of the cursor can then be reconstructed off-line to assess the efficiency of responding in time and across space. Here we focus on the process of selecting among alternative numerical responses. Several studies have recently measured the mathematical mind with cursor movements while people decided about number magnitude or parity, computed sums or differences, or simply located numbers on a number line. After some general methodological considerations about mouse tracking we discuss several conceptual concerns that become particularly evident when “mousing” the mathematical mind.
Resumo:
Spatial-numerical associations (small numbers-left/lower space and large numbers-right/upper space) are regularly found in simple number categorization tasks. These associations were taken as evidence for a spatially oriented mental number line. However, the role of spatial-numerical associations during more complex number processing, such as counting or mental arithmetic is less clear. Here, we investigated whether counting is associated with a movement along the mental number line. Participants counted aloud upward or downward in steps of 3 for 45 s while looking at a blank screen. Gaze position during upward counting shifted rightward and upward, while the pattern for downward counting was less clear. Our results, therefore, confirm the hypothesis of a movement along the mental number line for addition. We conclude that space is not only used to represent number magnitudes but also to actively operate on numbers in more complex tasks such as counting, and that the eyes reflect this spatial mental operation.
Resumo:
Little is known about how children learn to associate numbers with their corresponding magnitude and about individual characteristics contributing to performance differences on the numerical magnitude tasks within a relatively homogenous sample of 6-year-olds. The present study investigated the relationships between components of executive function and two different numerical magnitude skills in a sample of 162 kindergartners. The Symbolic Number Line was predicted by verbal updating and switching, whereas the Symbolic Magnitude Comparison was predicted by inhibition. Both symbolic tasks were predicted by visuo-spatial updating. Current findings suggest that visuo-spatial updating underlies young children’s retrieval and processing of numbers’ magnitude.
Resumo:
The "SNARC effect" refers to the finding that people respond faster to small numbers with the left hand and to large numbers with the right hand. This effect is often explained by hypothesizing that numbers are represented from left to right in ascending order (Mental Number Line). However, the SNARC effect may not depend on quantitative information, but on other factors such as the order in which numbers are often represented from left to right in our culture. Four experiments were performed to test this hypothesis. In the first experiment, the concept of spatial association was extended to nonnumeric mathematical symbols: the minus and plus symbols. These symbols were presented as fixation points in a spatial compatibility paradigm. The results demonstrated an opposite influence of the two symbols on the target stimulus: the minus symbol tends to favor the target presented on the left, while the plus symbol the target presented on the right, demonstrating that spatial association can emerge in the absence of a numerical context. In the last three experiments, the relationship between quantity and order was evaluated using normal numbers and mirror numbers. Although mirror numbers denote quantity, they are not encountered in a left-to-right spatial organization. In Experiments 1 and 2, participants performed a magnitude classification task with mirror and normal numbers presented together (Experiment 1) or separately (Experiment 2). In Experiment 3, participants performed a new task in which quantity information processing was not required: the mirror judgment task. The results show that participants access the quantity of both normal and mirror numbers, but only the normal numbers are spatially organized from left to right. In addition, the physical similarity between the numbers, used as a predictor variable in the last three experiments, showed that the physical characteristics of numbers influenced participants' reaction times.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
"Proof edition."