949 resultados para Nucleotide excision repair


Relevância:

100.00% 100.00%

Publicador:

Resumo:

About a third of the human population is estimated to be infected with Mycobacterium tuberculosis. The bacterium displays an excellent adaptability to survive within the host macrophages. As the reactive environment of macrophages is capable of inducing DNA damage, the ability of the pathogen to safeguard its DNA against the damage is of paramount significance for its survival within the host. Analysis of the genome sequence has provided important insights into the DNA repair machinery of the pathogen, and the studies on DNA repair in mycobacteria have gained momentum in the past few years. The studies have revealed considerable differences in the mycobacterial DNA repair machinery when compared with those of the other bacteria. This review article focuses especially on the aspects of base excision, and nucleotide excision repair pathways in mycobacteria. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

p53 activation is one of the main signals after DNA damage, controlling cell cycle arrest, DNA repair and apoptosis. We have previously shown that confluent nucleotide excision repair (NER)-deficient cells are more resistant to apoptosis induced by ultraviolet irradiation (UV). Here, we further investigated the effect of cell confluence on UV-induced apoptosis in normal and NER-deficient (XP-A and XP-C) cells, as well as the effects of treatments with the ATWATR inhibitor caffeine, and the patterns of p53 activation. Strong p53 activation was observed in either proliferating or confluent cells. Caffeine increased apoptosis levels and inhibited p53 activation in proliferating cells, suggesting a protective role for p53. However, in confluent NER-deficient cells no effect of caffeine was observed. Transcription recovery measurements showed decreased recovery in proliferating XPA-deficient cells, but no recovery was observed in confluent cells. The levels of the cyclin/Cdk inhibitor, p21(Waf1/Cip1), correlated well with p53 activation in proliferating cells. Surprisingly, confluent cells also showed similar activation of p21(Waf1/Cip1). These results indicate that reduced apoptosis in confluent cells is associated with the deficiency in DNA damage removal, since this effect is not clearly observed in NER-proficient cells. Moreover, the strong activation of p53 in confluent cells, which barely respond to apoptosis, suggests that this protein, under these conditions, is not linked to UV-induced cell death signaling. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, it has become apparent that DNA repair mechanisms are involved in the malignant progression and resistance to therapy of gliomas. Many investigators have shown that increased levels of O6-methyl guanine DNA alkyltransferase, a DNA monoalkyl adduct repair enzyme, are correlated with resistance of malignant glioma cell lines to nitrosourea-based chemotherapy. Three important DNA excision repair genes ERCC1 (excision repair cross complementation group 1), ERCC2 (excision repair cross complementation group 2), and ERCC6 (excision repair cross complementation group 6) have been studied in human tumors. Gene copy number variation of ERCC1 and ERCC2 has been observed in primary glioma tissues. A number of reports describing a relationship between ERCC1 gene alterations and resistance to anti-cancer drugs have been also described. The levels of ERCC1 gene expression, however, have not been correlated with drug resistance in gliomas. The expression of ERCC6 gene transcribes has been shown to vary with tissue types and to be highest in the brain. There have been no comprehensive studies so far, however, of ERCC6 gene expression and molecular alterations in malignant glioma. This project examined the ERCC1 expression levels and correlated them with cisplatin resistance in malignant glioma cell lines. We also examined the molecular alterations of ERCC6 gene in primary glioma tissues and cells and analyzed whether these alterations are related to tumor progression and chemotherapy resistance. Our results indicate the presence of mutations and/or deletions in exons II and V of the ERCC6 gene, and these alterations are more frequent in exon II. Furthermore, the mutations and/or deletions in exon II were shown to be associated with increased malignant grade of gliomas. The results on the Levels of ERCC1 gene transcripts showed that expression levels correlate with cisplatin resistance. The increase in ERCC1 mRNA induced by cisplatin could be down-regulated by cyclosporin A and herbimycin A. The results of this study are likely to provide useful information for clinical treatment of human gliomas. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Inhibition of DNA repair by the nucleoside of fludarabine (F-ara-A) induces toxicity in quiescent human cells. The sensing and signaling mechanisms following DNA repair inhibition by F-ara-A are unknown. The central hypothesis of this project was that the mechanistic interaction of a DNA repair initiating agent and a nucleoside analog initiates an apoptotic signal in quiescent cells. The purpose of this research was to identify the sensing and signaling mechanism(s) that respond to DNA repair inhibition by F-ara-A. Lymphocytes were treated with F-ara-A, to accumulate the active triphosphate metabolite and subsequently DNA repair was activated by UV irradiation. Pre-incubation of lymphocytes with 3 μM F-ara-A inhibited DNA repair initiated by 2 J/m2 UV and induced greater than additive apoptosis after 24 h. Blocking the incorporation of F-ara-A nucleotide into repairing DNA using 30 μM aphidicolin considerably lowered the apoptotic response. ^ Wild-type quiescent cells showed a significant loss in viability than did cells lacking functional sensor kinase DNA-PKcs or p53 as measured by colony formation assays. The functional status of ATM did not appear to affect the apoptotic outcome. Immunoprecipitation studies showed an interaction between the catalytic sub-unit of DNA-PK and p53 following DNA repair inhibition. Confocal fluorescence microscopy studies have indicated the localization pattern of p53, DNA-PK and γ-H2AX in the nucleus following DNA damage. Foci formation by γ-H2AX was seen as an early event that is followed by interaction with DNA-PKcs. p53 serine-15 phosphorylation and accumulation were detected 2 h after treatment. Fas/Fas ligand expression increased significantly after repair inhibition and was dependent on the functional status of p53. Blocking the interaction between Fas and Fas ligand by neutralizing antibodies significantly rescued the apoptotic fraction of cells. ^ Collectively, these results suggest that incorporation of the nucleoside analog into repair patches is critical for cytotoxicity and that the DNA damage, while being sensed by DNA-PK, may induce apoptosis by a p53-mediated signaling mechanism. Based on the results, a model is proposed for the sensing of F-ara-A-induced DNA damage that includes γ-H2AX, DNA-PKcs, and p53. Targeting the cellular DNA repair mechanism can be a potential means of producing cytotoxicity in a quiescent population of neoplastic cells. These results also provide mechanistic support for the success of nucleoside analogs with cyclophosphamide or other agents that initiate excision repair processes, in the clinic. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hereditary nonpolyposis colorectal cancer (HNPCC) is an autosomal dominant disease caused by germline mutations in DNA mismatch repair(MMR) genes. The nucleotide excision repair(NER) pathway plays a very important role in cancer development. We systematically studied interactions between NER and MMR genes to identify NER gene single nucleotide polymorphism (SNP) risk factors that modify the effect of MMR mutations on risk for cancer in HNPCC. We analyzed data from polymorphisms in 10 NER genes that had been genotyped in HNPCC patients that carry MSH2 and MLH1 gene mutations. The influence of the NER gene SNPs on time to onset of colorectal cancer (CRC) was assessed using survival analysis and a semiparametric proportional hazard model. We found the median age of onset for CRC among MMR mutation carriers with the ERCC1 mutation was 3.9 years earlier than patients with wildtype ERCC1(median 47.7 vs 51.6, log-rank test p=0.035). The influence of Rad23B A249V SNP on age of onset of HNPCC is age dependent (likelihood ratio test p=0.0056). Interestingly, using the likelihood ratio test, we also found evidence of genetic interactions between the MMR gene mutations and SNPs in ERCC1 gene(C8092A) and XPG/ERCC5 gene(D1104H) with p-values of 0.004 and 0.042, respectively. An assessment using tree structured survival analysis (TSSA) showed distinct gene interactions in MLH1 mutation carriers and MSH2 mutation carriers. ERCC1 SNP genotypes greatly modified the age onset of HNPCC in MSH2 mutation carriers, while no effect was detected in MLH1 mutation carriers. Given the NER genes in this study play different roles in NER pathway, they may have distinct influences on the development of HNPCC. The findings of this study are very important for elucidation of the molecular mechanism of colon cancer development and for understanding why some mutation carriers of the MSH2 and MLH1 gene develop CRC early and others never develop CRC. Overall, the findings also have important implications for the development of early detection strategies and prevention as well as understanding the mechanism of colorectal carcinogenesis in HNPCC. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The genomic DNA of eukaryotic cells is well organized into chromatin structures. However, these repressed structures present barriers that block the access of regulatory factors to the genome during various nuclear events. To overcome the obstacle, two major cellular processes, post-modification of histone tails and ATP-dependent chromatin remodeling, are involved in reconfiguring chromatin structure and creating accessible DNA. Despite the current research progress, much remains to be explored concerning the relationship between chromatin remodeling and DNA repair. Recently, one member of the ATP-dependent chromatin remodeling complexes, INO80, has been found to play a crucial role in DNA damage repair. However, the functions of this complex in higher eukaryotes have yet to be determined. The goal of my study is to generate a human somatic INO80 conditional knockout model and investigate the functions of Ino80 in damage repair.^ By homologous targeting of the INO80 locus in human HCT116 colon epithelial cells, I established a human somatic INO80 conditional knockout model. I have demonstrated that the conditional INO80 cells exhibited a sufficiently viable period when the INO80 protein is removed. Moreover, I found that loss of INO80 resulted in deficient UV lesion repair in response to UV while the protein levels of the NER factors such as XPC, XPA, XPD were not affected. And in vitro repair synthesis assay showed that the NER incision and repair synthesis activities were intact in the absence of INO80. Examination on the damage recognition factor XPC showed its recruitment to damage sites was impaired in the INO80 mutant cells. Loss of INO80 also led to reduced enrichment of XPA at the site of UV lesions. Despite the reduced recruitment of XPC and XPA observed in INO80 mutants, no direct interaction was detected. Meanwhile, direct interaction between INO80 and DDB1, the initial UV lesion detector, was detected by coimmunoprecipitation. UV-induced chromosome relaxation was reduced in cells devoid of INO80. These results demonstrate the INO80 complex may participates in the NER by interacting with DDB1 and having a critical role of in creating DNA accessibility for the nucleotide excision pathway. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Xeroderma pigmentosum (XP) patients fail to remove pyrimidine dimers caused by sunlight and, as a consequence, develop multiple cancers in areas exposed to light. The second most common sign, present in 20–30% of XP patients, is a set of neurological abnormalities caused by neuronal death in the central and peripheral nervous systems. Neural tissue is shielded from sunlight-induced DNA damage, so the cause of neurodegeneration in XP patients remains unexplained. In this study, we show that two major oxidative DNA lesions, 8-oxoguanine and thymine glycol, are excised from DNA in vitro by the same enzyme system responsible for removing pyrimidine dimers and other bulky DNA adducts. Our results suggest that XP neurological disease may be caused by defective repair of lesions that are produced in nerve cells by reactive oxygen species generated as by-products of an active oxidative metabolism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair proteins have been implicated in genetic recombination by experiments in Saccharomyces cerevisiae and Drosophila melanogaster, but their role, if any, in mammalian cells is undefined. To investigate the role of the nucleotide excision repair gene ERCC1, the hamster homologue to the S. cerevisiae RAD10 gene, we disabled the gene by targeted knockout. Partial tandem duplications of the adenine phosphoribosyltransferase (APRT) gene then were constructed at the endogenous APRT locus in ERCC1− and ERCC1+ cells. To detect the full spectrum of gene-altering events, we used a loss-of-function assay in which the parental APRT+ tandem duplication could give rise to APRT− cells by homologous recombination, gene rearrangement, or point mutation. Measurement of rates and analysis of individual APRT− products indicated that gene rearrangements (principally deletions) were increased at least 50-fold, whereas homologous recombination was affected little. The formation of deletions is not caused by a general effect of the ERCC1 deficiency on gene stability, because ERCC1− cell lines with a single wild-type copy of the APRT gene yielded no increase in deletions. Thus, deletion formation is dependent on the tandem duplication, and presumably the process of homologous recombination. Recombination-dependent deletion formation in ERCC1− cells is supported by a significant decrease in a particular class of crossover products that are thought to arise by repair of a heteroduplex intermediate in recombination. We suggest that the ERCC1 gene product in mammalian cells is involved in the processing of heteroduplex intermediates in recombination and that the misprocessed intermediates in ERCC1− cells are repaired by illegitimate recombination.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) and DNA mismatch repair are required for some common processes although the biochemical basis for this requirement is unknown. Saccharomyces cerevisiae RAD14 was identified in a two-hybrid screen using MSH2 as “bait,” and pairwise interactions between MSH2 and RAD1, RAD2, RAD3, RAD10, RAD14, and RAD25 subsequently were demonstrated by two-hybrid analysis. MSH2 coimmunoprecipitated specifically with epitope-tagged versions of RAD2, RAD10, RAD14, and RAD25. MSH2 and RAD10 were found to interact in msh3 msh6 and mlh1 pms1 double mutants, suggesting a direct interaction with MSH2. Mutations in MSH2 increased the UV sensitivity of NER-deficient yeast strains, and msh2 mutations were epistatic to the mutator phenotype observed in NER-deficient strains. These data suggest that MSH2 and possibly other components of DNA mismatch repair exist in a complex with NER proteins, providing a biochemical and genetical basis for these proteins to function in common processes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

After exposure to DNA-damaging agents, the p53 tumor suppressor protects against neoplastic transformation by inducing growth arrest and apoptosis. A series of investigations has also demonstrated that, in UV-exposed cells, p53 regulates the removal of DNA photoproducts from the genome overall (global nucleotide excision repair), but does not participate in an overlapping pathway that removes damage specifically from the transcribed strand of active genes (transcription-coupled nucleotide excision repair). Here, the highly sensitive ligation-mediated PCR was employed to quantify, at nucleotide resolution, the repair of UVB-induced cyclobutane pyrimidine dimers (CPDs) in genetically p53-deficient Li–Fraumeni skin fibroblasts, as well as in human lung fibroblasts expressing the human papillomavirus (HPV) E6 oncoprotein that functionally inactivates p53. Lung fibroblasts expressing the HPV E7 gene product, which similarly inactivates the retinoblastoma tumor-suppressor protein (pRb), were also investigated. pRb acts downstream of p53 to mediate G1 arrest, but has no demonstrated role in DNA repair. Relative to normal cells, HPV E6-expressing lung fibroblasts and Li–Fraumeni skin fibroblasts each manifested defective CPD repair along both the transcribed and nontranscribed strands of the p53 and/or c-jun loci. HPV E7-expressing lung fibroblasts also exhibited reduced CPD removal, but only along the nontranscribed strand. Our results provide striking evidence that transcription-coupled repair, in addition to global repair, are p53-dependent in UV-exposed human fibroblasts. Moreover, the observed DNA-repair defect in HPV E7-expressing cells reveals a function for this oncoprotein in HPV-mediated carcinogenesis, and may suggest a role for pRb in global nucleotide excision repair.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The protein p21Cip1, Waf1, Sdi1 is a potent inhibitor of cyclin-dependent kinases (CDKs). p21 can also block DNA replication through its interaction with the proliferating cell nuclear antigen (PCNA), which is an auxiliary factor for polymerase δ. PCNA is also implicated in the repair resynthesis step of nucleotide excision repair (NER). Previous studies have yielded contradictory results on whether p21 regulates NER through its interaction with PCNA. Resolution of this controversy is of interest because it would help understand how DNA repair and replication are regulated. Hence, we have investigated the effect of p21 on NER both in vitro and in vivo using purified fragments of p21 containing either the CDK-binding domain (N terminus) or the PCNA binding domain (C terminus) of the protein. In the in vitro studies, DNA repair synthesis was measured in extracts from normal human fibroblasts using plasmids damaged by UV irradiation. In the in vivo studies, we used intact and permeabilized cells. The results show that the C terminus of the p21 protein inhibits NER both in vitro and in vivo. These are the first in vivo studies in which this question has been examined, and we demonstrate that inhibition of NER by p21 is not merely an artificial in vitro effect. A 50% inhibition of in vitro NER occurred at a 50:1 molar ratio of p21 C-terminus fragment to PCNA monomer. p21 differentially regulates DNA repair and replication, with repair being much less sensitive to inhibition than replication. Our in vivo results suggest that the inhibition occurs at the resynthesis step of the repair process. It also appears that preassembly of PCNA at repair sites mitigates the inhibitory effect of p21. We further demonstrate that the inhibition of DNA repair is mediated via binding of p21 to PCNA. The N terminus of p21 had no effect on DNA repair, and the inhibition of DNA repair by the C terminus of p21 was relieved by the addition of purified PCNA protein.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nondistorting C4′ backbone adducts serve as molecular tools to analyze the strategy by which a limited number of human nucleotide excision repair (NER) factors recognize an infinite variety of DNA lesions. We have constructed composite DNA substrates containing a noncomplementary site adjacent to a nondistorting C4′ adduct to show that the loss of hydrogen bonding contacts between partner strands is an essential signal for the recruitment of NER enzymes. This specific conformational requirement for excision is mediated by the affinity of xeroderma pigmentosum group A (XPA) protein for nonhybridizing sites in duplex DNA. XPA recognizes defective Watson–Crick base pair conformations even in the absence of DNA adducts or other covalent modifications, apparently through detection of hydrophobic base components that are abnormally exposed to the double helical surface. This recognition function of XPA is enhanced by replication protein A (RPA) such that, in combination, XPA and RPA constitute a potent molecular sensor of denatured base pairs. Our results indicate that the XPA–RPA complex may promote damage recognition by monitoring Watson–Crick base pair integrity, thereby recruiting the human NER system preferentially to sites where hybridization between complementary strands is weakened or entirely disrupted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ERCC1–XPF is a structure-specific nuclease with two subunits, ERCC1 and XPF. The enzyme cuts DNA at junctions where a single strand moves 5′ to 3′ away from a branch point with duplex DNA. This activity has a central role in nucleotide excision repair (NER), DNA cross-link repair and recombination. To dissect the activities of the nuclease it is necessary to investigate the subunits individually, as studies of the enzyme so far have only used the heterodimeric complex. We produced recombinant ERCC1 and XPF separately in Escherichia coli as soluble proteins. Activity was monitored by a sensitive dual incision assay for NER by complementation of cell extracts. XPF and ERCC1 are unstable in mammalian cells in the absence of their partners but we found, surprisingly, that ERCC1 alone could confer some repair to extracts from ERCC1-defective cells. A version of ERCC1 lacking the first 88 non-conserved amino acids was also functional. This indicated that a small amount of active XPF was present in ERCC1 extracts, and immunoassays showed this to be the case. Some repair in XPF-defective extracts could be achieved by adding ERCC1 and XPF proteins together, but not by adding only XPF. The results show for the first time that functional ERCC1–XPF can be formed from separately produced subunits. Protein sequence comparison revealed similarity between the ERCC1 family and the C-terminal region of the XPF family, including the regions of both proteins that are necessary for the ERCC1–XPF heterodimeric interaction. This suggests that the ERCC1 and XPF families are related via an ancient duplication.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acquisition of genotoxin-induced mutations in the mammalian germline is detrimental to the stable transfer of genomic information. In somatic cells, nucleotide excision repair (NER) is a major pathway to counteract the mutagenic effects of DNA damage. Two NER subpathways have been identified, global genome repair (GGR) and transcription-coupled repair (TCR). In contrast to somatic cells, little is known regarding the expression of these pathways in germ cells. To address this basic question, we have studied NER in rat spermatogenic cells in crude cell suspension, in enriched cell stages and within seminiferous tubules after exposure to UV or N-acetoxy-2-acetylaminofluorene. Surprisingly, repair in spermatogenic cells was inefficient in the genome overall and in transcriptionally active genes indicating non-functional GGR and TCR. In contrast, extracts from early/mid pachytene cells displayed dual incision activity in vitro as high as extracts from somatic cells, demonstrating that the proteins involved in incision are present and functional in premeiotic cells. However, incision activities of extracts from diplotene cells and round spermatids were low, indicating a stage-dependent expression of incision activity. We hypothesize that sequestering of NER proteins by mispaired regions in DNA involved in synapsis and recombination may underlie the lack of NER activity in premeiotic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleotide excision repair (NER) of ultraviolet light-damaged DNA in eukaryotes requires a large number of highly conserved protein factors. Recent studies in yeast have suggested that NER involves the action of distinct protein subassemblies at the damage site rather than the placement there of a "preformed repairosome" containing all the essential NER factors. Neither of the two endonucleases, Rad1-Rad10 and Rad2, required for dual incision, shows any affinity for ultraviolet-damaged DNA. Rad1-Rad10 forms a ternary complex with the DNA damage recognition protein Rad14, providing a means for targeting this nuclease to the damage site. It has remained unclear how the Rad2 nuclease is targeted to the DNA damage site and why mutations in the human RAD2 counterpart, XPG, result in Cockayne syndrome. Here we examine whether Rad2 is part of a higher order subassembly. Interestingly, we find copurification of Rad2 protein with TFIIH, such that TFIIH purified from a strain that overexpresses Rad2 contains a stoichiometric amount of Rad2. By several independent criteria, we establish that Rad2 is tightly associated with TFIIH, exhibiting an apparent dissociation constant < 3.3 x 10(-9) M. These results identify a novel subassembly consisting of TFIIH and Rad2, which we have designated as nucleotide excision repair factor 3. Association with TFIIH provides a means of targeting Rad2 to the damage site, where its endonuclease activity would mediate the 3' incision. Our findings are important for understanding the manner of assembly of the NER machinery and they have implications for Cockayne syndrome.