897 resultados para Nucleic acid hybridization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ziel dieser Dissertation ist die experimentelle Charakterisierung und quantitative Beschreibung der Hybridisierung von komplementären Nukleinsäuresträngen mit oberflächengebundenen Fängermolekülen für die Entwicklung von integrierten Biosensoren. Im Gegensatz zu lösungsbasierten Verfahren ist mit Microarray Substraten die Untersuchung vieler Nukleinsäurekombinationen parallel möglich. Als biologisch relevantes Evaluierungssystem wurde das in Eukaryoten universell exprimierte Actin Gen aus unterschiedlichen Pflanzenspezies verwendet. Dieses Testsystem ermöglicht es, nahe verwandte Pflanzenarten auf Grund von geringen Unterschieden in der Gen-Sequenz (SNPs) zu charakterisieren. Aufbauend auf dieses gut studierte Modell eines House-Keeping Genes wurde ein umfassendes Microarray System, bestehend aus kurzen und langen Oligonukleotiden (mit eingebauten LNA-Molekülen), cDNAs sowie DNA und RNA Targets realisiert. Damit konnte ein für online Messung optimiertes Testsystem mit hohen Signalstärken entwickelt werden. Basierend auf den Ergebnissen wurde der gesamte Signalpfad von Nukleinsärekonzentration bis zum digitalen Wert modelliert. Die aus der Entwicklung und den Experimenten gewonnen Erkenntnisse über die Kinetik und Thermodynamik von Hybridisierung sind in drei Publikationen zusammengefasst die das Rückgrat dieser Dissertation bilden. Die erste Publikation beschreibt die Verbesserung der Reproduzierbarkeit und Spezifizität von Microarray Ergebnissen durch online Messung von Kinetik und Thermodynamik gegenüber endpunktbasierten Messungen mit Standard Microarrays. Für die Auswertung der riesigen Datenmengen wurden zwei Algorithmen entwickelt, eine reaktionskinetische Modellierung der Isothermen und ein auf der Fermi-Dirac Statistik beruhende Beschreibung des Schmelzüberganges. Diese Algorithmen werden in der zweiten Publikation beschrieben. Durch die Realisierung von gleichen Sequenzen in den chemisch unterschiedlichen Nukleinsäuren (DNA, RNA und LNA) ist es möglich, definierte Unterschiede in der Konformation des Riboserings und der C5-Methylgruppe der Pyrimidine zu untersuchen. Die kompetitive Wechselwirkung dieser unterschiedlichen Nukleinsäuren gleicher Sequenz und die Auswirkungen auf Kinetik und Thermodynamik ist das Thema der dritten Publikation. Neben der molekularbiologischen und technologischen Entwicklung im Bereich der Sensorik von Hybridisierungsreaktionen oberflächengebundener Nukleinsäuremolekülen, der automatisierten Auswertung und Modellierung der anfallenden Datenmengen und der damit verbundenen besseren quantitativen Beschreibung von Kinetik und Thermodynamik dieser Reaktionen tragen die Ergebnisse zum besseren Verständnis der physikalisch-chemischen Struktur des elementarsten biologischen Moleküls und seiner nach wie vor nicht vollständig verstandenen Spezifizität bei.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Banana bunchy top disease (BBTD) caused by banana bunchy top virus (BBTV) was radioactively detected by nucleic acid hybridization techniques. Results showed that, 32P-labelled insert of pBT338 was hybridized with nucleic acid extracts from BBTV-infected plants from Egypt and Australia but not with those from CMV-infected plants from Egypt. Results revealed that BBTV was greatly detected in midrib, roots, meristem, corm, leaves and pseudostem respectively. BBTV was also detected in symptomless young plants prepared from diseased plant materials grown under tissue culture conditions but was not present in those performed from healthy plant materials. The sensitivity of dot blot and Southern blot hybridizations for the detection of BBTV was also performed for the detection of BBTV.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have found that it is possible to use labeled peptide nucleic acid (PNA)-oligomers as probes in pre-gel hybridization experiments, as an alternative for Southern hybridization. In this technique, the PNA probe is hybridized to a denatured DNA sample at low ionic strength and the mixture is loaded directly on to an electrophoresis system for size separation. Ensuing gel electrophoresis separates the single-stranded DNA fragments by length. The neutral backbone of PNA allows for hybridization at low ionic strength and imparts very low mobility to excess PNA. Detection of the bound PNA is possible by direct fluorescence detection with capillary electrophoresis, or the DNA/PNA hybrids can be blotted onto a membrane and detected with standard chemiluminescent techniques. Efficient single bp discrimination was achieved routinely using both capillary and slab-gel electrophoresis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We demonstrate that in situ optical surface plasmon resonance spectroscopy can be used to monitor hybridization kinetics for unlabeled DNA in tethered monolayer nucleic acid films on gold in the presence of an applied electrostatic field. The dc field can enhance or retard hybridization and can also denature surface-immobilized DNA duplexes. Discrimination between matched and mismatched hybrids is achieved by simple adjustment of the electrode potential. Although the electric field at the interface is extremely large, the tethered single-stranded DNA thiol probes remain bound and can be reused for subsequent hybridization reactions without loss of efficiency. Only capacitive charging currents are drawn; redox reactions are avoided by maintaining the gold electrode potential within the ideally polarizable region. Because of potential-induced changes in the shape of the surface plasmon resonance curve, we account for the full curve rather than simply the shift in the resonance minimum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With an increased emphasis on genotyping of single nucleotide polymorphisms (SNPs) in disease association studies, the genotyping platform of choice is constantly evolving. In addition, the development of more specific SNP assays and appropriate genotype validation applications is becoming increasingly critical to elucidate ambiguous genotypes. In this study, we have used SNP specific Locked Nucleic Acid (LNA) hybridization probes on a real-time PCR platform to genotype an association cohort and propose three criteria to address ambiguous genotypes. Based on the kinetic properties of PCR amplification, the three criteria address PCR amplification efficiency, the net fluorescent difference between maximal and minimal fluorescent signals and the beginning of the exponential growth phase of the reaction. Initially observed SNP allelic discrimination curves were confirmed by DNA sequencing (n = 50) and application of our three genotype criteria corroborated both sequencing and observed real-time PCR results. In addition, the tested Caucasian association cohort was in Hardy-Weinberg equilibrium and observed allele frequencies were very similar to two independently tested Caucasian association cohorts for the same tested SNP. We present here a novel approach to effectively determine ambiguous genotypes generated from a real-time PCR platform. Application of our three novel criteria provides an easy to use semi-automated genotype confirmation protocol.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acids are most commonly associated with the genetic code, transcription and gene expression. Recently, interest has grown in engineering nucleic acids for biological applications such as controlling or detecting gene expression. The natural presence and functionality of nucleic acids within living organisms coupled with their thermodynamic properties of base-pairing make them ideal for interfacing (and possibly altering) biological systems. We use engineered small conditional RNA or DNA (scRNA, scDNA, respectively) molecules to control and detect gene expression. Three novel systems are presented: two for conditional down-regulation of gene expression via RNA interference (RNAi) and a third system for simultaneous sensitive detection of multiple RNAs using labeled scRNAs.

RNAi is a powerful tool to study genetic circuits by knocking down a gene of interest. RNAi executes the logic: If gene Y is detected, silence gene Y. The fact that detection and silencing are restricted to the same gene means that RNAi is constitutively on. This poses a significant limitation when spatiotemporal control is needed. In this work, we engineered small nucleic acid molecules that execute the logic: If mRNA X is detected, form a Dicer substrate that targets independent mRNA Y for silencing. This is a step towards implementing the logic of conditional RNAi: If gene X is detected, silence gene Y. We use scRNAs and scDNAs to engineer signal transduction cascades that produce an RNAi effector molecule in response to hybridization to a nucleic acid target X. The first mechanism is solely based on hybridization cascades and uses scRNAs to produce a double-stranded RNA (dsRNA) Dicer substrate against target gene Y. The second mechanism is based on hybridization of scDNAs to detect a nucleic acid target and produce a template for transcription of a short hairpin RNA (shRNA) Dicer substrate against target gene Y. Test-tube studies for both mechanisms demonstrate that the output Dicer substrate is produced predominantly in the presence of a correct input target and is cleaved by Dicer to produce a small interfering RNA (siRNA). Both output products can lead to gene knockdown in tissue culture. To date, signal transduction is not observed in cells; possible reasons are explored.

Signal transduction cascades are composed of multiple scRNAs (or scDNAs). The need to study multiple molecules simultaneously has motivated the development of a highly sensitive method for multiplexed northern blots. The core technology of our system is the utilization of a hybridization chain reaction (HCR) of scRNAs as the detection signal for a northern blot. To achieve multiplexing (simultaneous detection of multiple genes), we use fluorescently tagged scRNAs. Moreover, by using radioactive labeling of scRNAs, the system exhibits a five-fold increase, compared to the literature, in detection sensitivity. Sensitive multiplexed northern blot detection provides an avenue for exploring the fate of scRNAs and scDNAs in tissue culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

By differential screening, we cloned the CagCNBP, demonstrated its predominant expression in ovary and testis, and reported its development behavior during folliculogenesis and oogenesis by immunofluorescence localization (Liu and Gui, Gene 365:181-192, 2005), but its developmental behavior during spermatogenesis and its transcript distribution during embryogenesis are not revealed. In the present study, by in situ hybridization, we analyze CagCNBP expression pattern during gibel carp embryogenesis. The CagCNBP transcripts ubiquitously distributed in all embryonic cells in early developmental stage embryos, and peak in midbrain, hindbrain and somites of gibel carp larva during organogenesis. By antibody detection, we reveal CagCNBP protein distribution change during spermatogenesis. The cell-specific distribution of CagCNBP is revealed by immunofluorescence staining, and predominant CagCNBP expression in testis somatic cells and spermatogonia is demonstrated in this paper. For the first time, the CNBP distribution during spermatogenesis in vertebrate has been revealed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Label free electrochemiluminescence (ECL) DNA detection based on catalytic guanine and adenine bases oxidation using tris(2,2'-bipyridyl)ruthenium(II) [Ru(bpy)(3)(2+)] modified glassy carbon (GC) electrode was demonstrated in this work. The modified GC electrode was prepared by casting carbon nanotubes (CNT)/Nafion/Ru(bpy)(3)(2+) composite film on the electrode surface. ECL signals of doublestranded DNA and their thermally denatured counterparts can be distinctly discriminated using cyclic voltammetry (CV) with a low concentration (3.04 x 10(-8) mol/L for Salmon Testes-DNA). Most importantly, sensitive single-base mismatch detection of p53 gene sequence segment was realized with 3.93 x 10(-10) mol/L employing CV stimulation (ECL signal of C/A mismatched DNA oligonucleotides was 1.5-fold higher than that of fully base-paired DNA oligonucleotides). Label free, high sensitivity and simplicity for single-base mismatch discrimination were the main advantages of the present ECL technique for DNA detection over the traditional DNA sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fluorinated olefinic peptide nucleic acid (F-OPA) system was designed as a peptide nucleic acid (PNA) analogue in which the base carrying amide moiety was replaced by an isostructural and isoelectrostatic fluorinated C-C double bond, locking the nucleobases in one of the two possible rotameric forms. By comparison of the base-pairing properties of this analogue with its nonfluorinated analogue OPA and PNA, we aimed at a closer understanding of the role of this amide function in complementary DNA recognition. Here we present the synthesis of the F-OPA monomer building blocks containing the nucleobases A, T, and G according to the MMTr/Acyl protecting group scheme. Key steps are a selective desymmetrization of the double bond in the monomer precursor via lactonization as well as a highly regioselective Mitsunobu reaction for the introduction of the bases. PNA decamers containing single F-OPA mutations and fully modified F-OPA decamers and pentadecamers containing the bases A and T were synthesized by solid-phase peptide chemistry, and their hybridization properties with complementary parallel and antiparallel DNA were assessed by UV melting curves and CD spectroscopic methods. The stability of the duplexes formed by the decamers containing single (Z)-F-OPA modifications with parallel and antiparallel DNA was found to be strongly dependent on their position in the sequence with T(m) values ranging from +2.4 to -8.1 degrees C/modification as compared to PNA. Fully modified F-OPA decamers and pentadecamers were found to form parallel duplexes with complementary DNA with reduced stability compared to PNA or OPA. An asymmetric F-OPA pentadecamer was found to form a stable self-complex (T(m) approximately 65 degrees C) of unknown structure. The generally reduced affinity to DNA may therefore be due to an increased propensity for self-aggregation

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid sequence-based amplification (NASBA) has proved to be an ultrasensitive method for HIV-1 diagnosis in plasma even in the primary HIV infection stage. This technique was combined with fluorescence correlation spectroscopy (FCS) which enables online detection of the HIV-1 RNA molecules amplified by NASBA. A fluorescently labeled DNA probe at nanomolar concentration was introduced into the NASBA reaction mixture and hybridizing to a distinct sequence of the amplified RNA molecule. The specific hybridization and extension of this probe during amplification reaction, resulting in an increase of its diffusion time, was monitored online by FCS. As a consequence, after having reached a critical concentration of 0.1–1 nM (threshold for unaided FCS detection), the number of amplified RNA molecules in the further course of reaction could be determined. Evaluation of the hybridization/extension kinetics allowed an estimation of the initial HIV-1 RNA concentration that was present at the beginning of amplification. The value of initial HIV-1 RNA number enables discrimination between positive and false-positive samples (caused for instance by carryover contamination)—this possibility of discrimination is an essential necessity for all diagnostic methods using amplification systems (PCR as well as NASBA). Quantitation of HIV-1 RNA in plasma by combination of NASBA with FCS may also be useful in assessing the efficacy of anti-HIV agents, especially in the early infection stage when standard ELISA antibody tests often display negative results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic Acid hairpins have been a subject of study for the last four decades. They are composed of single strand that is

hybridized to itself, and the central section forming an unhybridized loop. In nature, they stabilize single stranded RNA, serve as nucleation

sites for RNA folding, protein recognition signals, mRNA localization and regulation of mRNA degradation. On the other hand,

DNA hairpins in biological contexts have been studied with respect to forming cruciform structures that can regulate gene expression.

The use of DNA hairpins as fuel for synthetic molecular devices, including locomotion, was proposed and experimental demonstrated in 2003. They

were interesting because they bring to the table an on-demand energy/information supply mechanism.

The energy/information is hidden (from hybridization) in the hairpin’s loop, until required.

The energy/information is harnessed by opening the stem region, and exposing the single stranded loop section.

The loop region is now free for possible hybridization and help move the system into a thermodynamically favourable state.

The hidden energy and information coupled with

programmability provides another functionality, of selectively choosing what reactions to hide and

what reactions to allow to proceed, that helps develop a topological sequence of events.

Hairpins have been utilized as a source of fuel for many different DNA devices. In this thesis, we program four different

molecular devices using DNA hairpins, and experimentally validate them in the

laboratory. 1) The first device: A

novel enzyme-free autocatalytic self-replicating system composed entirely of DNA that operates isothermally. 2) The second

device: Time-Responsive Circuits using DNA have two properties: a) asynchronous: the final output is always correct

regardless of differences in the arrival time of different inputs.

b) renewable circuits which can be used multiple times without major degradation of the gate motifs

(so if the inputs change over time, the DNA-based circuit can re-compute the output correctly based on the new inputs).

3) The third device: Activatable tiles are a theoretical extension to the Tile assembly model that enhances

its robustness by protecting the sticky sides of tiles until a tile is partially incorporated into a growing assembly.

4) The fourth device: Controlled Amplification of DNA catalytic system: a device such that the amplification

of the system does not run uncontrollably until the system runs out of fuel, but instead achieves a finite

amount of gain.

Nucleic acid circuits with the ability

to perform complex logic operations have many potential practical applications, for example the ability to achieve point of care diagnostics.

We discuss the designs of our DNA Hairpin molecular devices, the results we have obtained, and the challenges we have overcome

to make these truly functional.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Carrot mottle umbravirus (CMoV) has always been found co-infecting plants with carrot red leaf luteovirus (CRLV) and in carrot (Daucus carota) these co-infections are associated with carrot motley dwarf disease (CMD). CMD occurs wherever carrots are grown. Hence, CMoV was believed to have a corresponding global distribution. However, little or no hybridisation was detected between cDNA generated from the sequenced Australian isolate of CMoV (CMoV-A) and RNA from the much studied Scottish isolate of CMoV (CMoV-S). A weak hybridisation signal was obtained using cDNA to a conserved part of the RNA-dependent RNA polymerase gene of CMoV-A, but when cDNAs to other parts of the CMoV-A genome were used as probes there was no detectable hybridisation with CMoV-S RNA. This lack of hybridisation suggests that the two virus isolates have relatively divergent genomes and that they should be regarded as distinct virus species. Both viruses are transmitted by Cavariella aegopodii, but only with the help of CRLV, and they yield almost identical double-stranded RNA profiles. For these reasons, we propose that the CMoV isolate from Australia be renamed carrot mottle mimic umbravirus (CMoMV). cDNA to CMoMV RNA hybridised with RNA from an isolate from New Zealand, whereas cDNA to CMoV-S RNA hybridised with RNA from isolates from England and Morocco but not to RNA from the isolate from New Zealand. Although preliminary, these data suggest that CMoV and CMoMV may have different global distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water soluble carbodiimide mediated condensation of dipeptides of the general form Gly-X was carried out in the presence of mono- and poly-nucleotides. The observed yield of the tetrapeptide was found to be higher for peptide-nucleotide system of higher interaction specificity following mainly the anticodon-amino acid relationship (Basu, H.S. & Podder, S.K., 1981, Ind. J. Biochem. Biophys.,19, 251-253). The yield of the condensation product of L-peptide was more because of its higher interaction specificity. The extent of the racemization during the condensation of Gly-L-Phe, Gly-L-Tyr and Gly-D-Phe was found to be dependent on the specificity of the interaction -the higher the specificity, the lesser the racemization. The product formed was shown to have a catalytic effect on the condensation reaction. These data thus provide a mechanism showing how the specific interaction between amino acids/dipeptides and nucleic acids could lead to the formation of the lsquoprimitiversquo translation machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CRYSTAL structure determinations of nucleic acid fragments have shown that several of the conformational features found in the monomeric building blocks are also manifested at the nucleic acid level. Stereochemical variations between thymine and uracil nucleotides are therefore of interest as they can provide a structural basis for some of the differences between the conformations of DNA and RNA. X-ray studies have so far not shown any major dissimilarities between these two nucleotide species although the sugar ring of deoxyribonucleotides is found to possess greater flexibility than that in ribonucleotides. We report here the molecular structure of deoxyuridine-5'-phosphate (dUMP-5') which is not a common monomer unit of DNAs as it is replaced by its 5-methyl analogue deoxythymidine-5'-phosphate (dTMP-5'). The investigation was undertaken to help determine whether or not this implied a fundamental difference between the geometries of these two molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nucleic acid reactive antibodies have been reported to inhibit various nucleio acid mediated functions in cell free systems. These antibodies were also shown to inhibit the growth of transformed cells in culture due to the high rate of endocytosis in transformed cells as compared to normal cells. In this report, we have tested the possibility of nucleic acid reactive antibodies inhibiting the growth of tumor cells in vivo. The life span of mice bearing Dalton's lymphoma ascites tumor cells was increased, when they were immunized with conjugates of guanosine-BSA, GMP-BSA and tRNA-MBSA complex before transplanting the tumor cells. A similar effect was also observed when mice were injected intraperitoneally with antibodies to guanosine oi GMP along with the tumor cells. The specificity was ascertained, as immunization with non-specific antigens did not show any significant effect on tumor bearing mice. The results shows that nucleic acid. reactive antibodies inhibit the growth of tumor cells in vivo.